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White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating

white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic path-

ways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform

the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and sub-

type counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample

of ~157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or

moreWBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these

loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87),

transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules

involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome andmicrotubule structure/function (KIF9,

TUBD1). Together with recent reports of somatic ASXL1mutations among individuals with idiopathic cytopenias or clonal hematopoi-

esis of undetermined significance, the identification of a common regulatory 30 UTR variant of ASXL1 suggests that both germline and

somatic ASXL1mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light

on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory

and autoimmune diseases.

Introduction

White blood cells (WBCs) are major constituents of the
blood and lymphatic system. They are classified into two

lineages: myeloid (neutrophils, basophils, eosinophils,
and monocytes) and lymphoid (lymphocytes). Lineage
commitment of hematopoietic stem cells involves precise
transcriptional and epigenetic regulation, creating the
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specific bone marrow microenvironment to produce each
distinct mature blood cell type.1 Mature WBCs play
diverse, choreographed roles in innate and adaptive immu-
nity including detection, neutralization, and elimination
of invading pathogens, response to tissue injury, and
wound healing. In addition, WBCs are associated with
the development of chronic inflammatory, allergic, and
autoimmune diseases.2 Therefore, total and differential
WBC counts are important clinical measures of susceptibil-
ity to infection and used to monitor disease activity and
tolerability to therapeutic regimens for oncologic and
rheumatologic diseases.

Total and differential WBC counts are complex, poly-
genic traits with estimated heritability of 50%–60%.3

Previous genome-wide association studies (GWASs) have
characterized common and lower frequency variation
contributing to WBC counts in European, African, and
Asian ancestry populations (N.P., U.M.S., J.B.-J., and
M.-H.C., unpublished data).3–12 More than 30 distinct ge-
netic loci have been discovered; in some instances, these
genetic studies have provided important biologic insights
into the development, maturation, or regulation of WBC
types. Nonetheless, these studies have explained only a
small proportion (<10%) of the estimated heritability of
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WBC traits in European ancestry populations6 and less
than 25% in African ancestry (AA) populations (in AA, a
substantial proportion of the variation in WBC counts is
attributed to a single variant—rs2814778—inDARC [Duffy
Antigen Receptor for Chemokines (MIM: 613665)]).3,13 In
an effort to augment the discoveries from GWASs and to
identify additional functional loci contributing to varia-
tion in WBC counts, we performed exome array-based
meta-analysis of total and differential counts in a multi-
ancestry samples from 25 studies.

Material and Methods

Study Subjects
The Blood-Cell Consortium (BCX) is an international collabora-

tion with the goal of identifying common and rare variants asso-

ciated with blood cell traits through exome genotyping arrays

(Table S1). The consortium, which is comprised of multi-ancestry

cohorts including European ancestry (EA), African ancestry (AA),

Hispanic ancestry (HA), East Asian ancestry (EAS), and South Asian

ancestry (SA), is divided into threemainworking groups: red blood

cell (RBC), platelet, andWBC. For exome-wide association analysis

of WBC traits, the discovery and replication phases included a

total of 157,622 participants from 25 cohorts (Tables 1, S2, and

S3). The discovery sample consisted of up to 138,814 individuals

from 21 studies. The replication sample included 18,808 indepen-

dent individuals from 4 additional studies. The division of discov-

ery and replication samples was dictated by timing; we collected

all available studies for initial discovery and then identified others

who could participate only at a later point in time and hence were

used for replication. A summary of descriptive statistics for total

WBC, neutrophils, monocytes, lymphocytes, basophils, and

eosinophils is shown in Table S4. All participants provided

informed consent and the study was approved by the Institutional

Review Board of each participating study.

Genotyping and Quality Control
Each participating study used one of the following exome content

genotypingarrays: IlluminaExomeChipv.1.0, IlluminaExomeChip

v.1.1_A, Illumina ExomeChip-12 v.1.1, Affymetrix Axiom Biobank

Plus GSKBB1, or Illumina HumanOmniExpressExome Chip. Geno-

types were called either using a combination of the Illumina

GenomeStudioandzCall softwareorusing theExomechip joint call-

ing plan developed by the Cohorts for Heart and Aging Research in

Genomic Epidemiology (CHARGE) Consortium14 (Table S1). Stan-

dard quality-control criteria were applied by each study. Exclusion

criteria included sample call rates of less than 98%, excess heterozy-

gosity rates, Hardy-Weinberg equilibrium p values < 13 10!6, and

sex mismatch. Additionally, ancestry was confirmed through prin-

cipal components ormulti-dimensional scaling analyses using link-

age disequilibrium (LD) prunedmarkers (r2< 0.2) withminor allele

frequency greater than 1%. Scatterplots anchored using the 1000

Genomes Project populations were visually inspected and ancestry

outliers were excluded. Insertion and deletion variants and variants

mapping to the Y chromosome, the pseudo-autosomal region, or

mitochondrial sequence were removed, leaving only those on the

autosomal and X chromosomes. All remaining variants (including

monomorphic variants) were aligned to the forward strand and al-

leles were checked to ensure that the correct reference allele was

specified. After all quality-control procedures, each study generated

an indexed variant call file (VCF) for subsequent analyses. The VCF

files were checked for allele alignment with the checkVCF package.

We performed study-specific quality control on each trait associ-

ation result using the EasyQC protocol.15 Variant allele fre-

quencies from each study were plotted against ethnicity-specific

reference population allele frequencies to identify allele frequency

deviations and the presence of flipped alleles. In order to assess

proper trait transformation in each cohort, a scatterplot of the me-

dian standard error versus study-specific sample size was visually

inspected for deviations.

Statistical Analysis
To assess the association between WBC-related traits and Exome-

chip variants, white blood cell and differential counts (total

WBC, neutrophils, monocytes, lymphocytes, eosinophils, and

basophils) were obtained from complete blood cell count. Each

of the WBC-related traits was log10 transformed to normalize the

distribution of the traits. In each participating study, residuals

for each WBC trait were calculated from linear regression models

adjusted for age, age-squared, sex, study center (where applicable),

and principal components. Residuals from this model were then

transformed using the rank-based inverse normal transformation

to control type I error.16 Autosomal and X chromosome variants

were then tested for association with each WBC trait using either

Rvtests or RAREMETALWORKER software packages. Both packages

generate single variant association score summary statistics, vari-

ance-covariance matrices containing LD relationships between

Table 1. Sample Sizes for Exome-wide Association Analyses of White Blood Cell Traits

Population Total WBC Neutrophils Monocytes Lymphocytes Basophils Eosinophils

Discovery

European ancestry 108,596 60,851 44,325 47,105 44,138 32,517

African ancestry 23,250 10,119 9,790 9,808 9,509 8,282

Hispanic American 5,536 4,825 3,452 3,450 3,453 3,450

East Asian 968 965 – – – –

South Asian 464 463 – – – –

Replication

European ancestry 18,808 17,066 17,066 17,109 16,189 15,327

Total 157,622 94,289 74,633 77,472 73,289 59,576
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variants within a 1 MB window, and variant-specific parameters

including minor allele frequency, chromosome position, strand,

genotype call rate, and Hardy-Weinberg equilibrium p values.

Discovery Association Meta-analysis
For each WBC trait, we performed three distinct discovery meta-

analyses: in EA only, AA only, and combined across all five

ancestry groups. Ancestry-stratified (EA and AA) and combined

all ancestry (EA, AA, HA, EAS, and SA) meta-analyses of single

variant association results were carried out using the Cochran-

Mantel-Haenszel approach implemented in RareMETALS.17 We

included variants in the meta-analysis if the genotype call rate

was R95%. For palindromic variants (i.e., A/T and C/G variants),

we compared allele frequencies taken across the entire consortium

in order to detect flipped alleles. We kept variants with an allele

frequency difference <0.3 or <0.6 for ancestry-specific (EA, AA)

or combined all ancestry analyses, respectively.15 Using single-

variant score statistics and variance-covariance matrices of LD es-

timates, we performed two types of gene-based tests across the

contributing studies: (1) a burden test that assumes all qualifying

rare variants in a gene are associated with a trait with the same di-

rection of effect (variable threshold test), and (2) the sequence

kernel association test (SKAT) that accounts for rare variants in a

gene having opposing direction of effects.17 For all gene-based

tests performed, we considered single-nucleotide variants (SNVs)

with an allele frequency of %1% and annotated as missense,

nonsense, and splice site variants; the latter two categories include

loss-of-function variants. Similar to the single-variant analyses, re-

sults were generated for EA, AA, and for the combined all ancestry

samples. For the discovery single variant and gene-based associa-

tion analyses, the statistical significance threshold was set as

p value < 2 3 10!7 and < 3 3 10!6, respectively.

Conditional Analysis
To identify multiple independent associations within a region, us-

ing the RareMETALS software we performed stepwise conditional

analyses adjusting for the most significant single variant in a

1 MB window, across the entire Exomechip array. This step was

repeated until there was no new association signals identified in

each region, defined as a p value < 2 3 10!7. Further, to assess

whether SNVs identified by the present study were independent

of any previously reported WBC-associated variants, we condi-

tioned our regression models on known GWAS sentinel variants

or their proxies (LD r2 R 0.80). For regions of the genome where

there is extended LD structure spanning more than 1 MB, we per-

formed a stepwise conditional analysis in GCTA software18 condi-

tioning on the most significant variant in the region first (or the

GWAS sentinel variant or LD proxy).

Replication Meta-analysis
We sought replication of association results using four indepen-

dent European ancestry cohorts (Tables 1 and S3). The single-

variant association results from each replication cohort were

combined using the Cochran-Mantel-Haenszel method in

RareMETALS. Contributing replication cohorts adhered to the

quality control and association analysis procedures described

previously for the discovery analysis. Replication of association

findings were considered significant if the variants demonstrated

the same direction of effect as the discovery association meta-

analyses with a replication p value < 0.05. A meta-analysis of

discovery and replication results was performed using an in-

verse-variance weighting method as implemented in METAL.19

We also performed replication of gene-based associations in inde-

pendent ~2,900 EA samples.

Phenome-wide Association Study Analysis
In 29,722 EA samples from the BioVU study,20 we performed phe-

nome-wide association study (PheWAS) analysis21 to assess the as-

sociation between our WBC-related loci and 1,502 International

Classification of Disease, Ninth Revision (ICD-9) code curated

clinical phenotypes.21 Variants were included in the analysis if

there were ten cases with at least one copy of the minor allele.

Associations between SNVs and phenotypes were assessed using

a logistic regressionmodel adjusted for sex and five principal com-

ponents. Empirical significance was estimated by permutation

test. The permutation test was performed by assigning each vector

of clinical phenotypes to a random subject 50,000 times, and then

scanning all SNV-phenotype combinations with association tests.

We then created a ranked distribution of the maximum test statis-

tics over all SNV-phenotype combinations in each of the 50,000

permutations. The 95th percentile of the distribution of maximum

test statistics across the 1,502 clinical phenotypes and 95 SNVs

equates to a threshold that controls the family-wise error rate at

0.05. This threshold accounts for multiple testing across SNVs

and phenotypes. Our observed test statistics greater than this

95th percentile were considered statistically significant.

To further assess pleiotropy between WBC-associated variants

and inflammatory diseases, we performed lookups in published

GWASs of various autoimmune diseases (celiac disease [MIM:

212750], inflammatory bowel disease [IBD; MIM: 266600], multi-

ple sclerosis [MS; MIM: 126200], primary biliary cirrhosis [PBC;

MIM: 109720], psoriasis [MIM: 177900], rheumatoid arthritis

[RA; MIM: 180300], systemic lupus erythematosus [SLE; MIM:

152700], type 1 diabetes mellitus [T1D; MIM: 222100]) and coro-

nary artery disease (MIM: 608901).22–30 We supplemented the

full GWAS summary statistics lookups with the GRASP database31

to include other immunologically relevant clinical phenotypes

and quantitative traits. Similarly, to assess whether the WBC vari-

ants were associated with other blood cell traits, we obtained effect

sizes and p values for these variants from RBC- and platelet-related

traits exome array analyses within the BCX consortium.32,33

Functional Annotation of Variants
To assess the functional consequences of coding and non-coding

variants associated with WBC traits, we utilized a variety of exist-

ing variant annotation resources. Using a curated collection of

more than 100 separate expression quantitative trait loci (eQTL)

datasets, we queried whether our list of WBC-trait loci were also

associated with transcript expression in blood-cell-specific eQTL

datasets. A general overview of a subset of >50 eQTL studies has

been published,34 with specific citations for the blood-cell-specific

eQTL datasets shown in Table S5. Additional in silico functional

annotations were performed with ANNOVAR.35 The deleterious-

ness of each variant was estimated with the Combined Annota-

tion-Dependent Depletion (CADD) score where each variant is

assigned a scaled C score; a score of greater than 10 is suggested

to indicate deleteriousness.36

Results

We conducted an exome-wide association analyses of total
WBC and differential counts (neutrophils, monocytes,
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lymphocytes, basophils, and eosinophils) in a discovery
sample of ~138,814 individuals of European, African, His-
panic, East Asian, and South Asian ancestries across 21 co-
horts (Tables 1 and S3). Quantile-quantile plots with
genomic inflation factors and their respective Manhattan
plots for each discovery meta-analysis are presented in Fig-
ures 1, S1, and S2. The discovery effort yielded 144 array-
wide significant SNV associations (p value < 2.0 3 10!7)
(Table S6). After stepwise conditional analyses, we refined
this list to 28 independent SNV associations with WBC
counts that were not previously reported (Table S7).
Of these 28 variant associations, 16 were replicated
(p value < 0.05 and consistent direction of effect) in
17,897 independent EA individuals (Figure 1, Table 2).
Fourteen of the replicated loci are located in genomic re-
gions not previously associated with WBC traits. The re-
maining two loci (TNXB rs185819 and IRF8 rs11642873)
represent secondary, independent signals located within
a 1 MB window of a previously reported WBC locus. Of
the 16 replicated loci, 10 were significantly associated
with total WBC count, 2 with neutrophil count, 4 with
monocyte count, 2 with lymphocyte count, and 1 with

basophil count. As described further below, several loci
were associated with more than one WBC trait (Table 2);
the WBC-subtype-specific association results for each of
the 16 replicated variants are shown in Table S8. For each
locus, the allele frequencies stratified by ancestry are
shown in Table S9. The full summary Exomechip associa-
tion results for all traits are publicly available online (see
Web Resources).

Total WBC
We foundmissense variants in a number of genes that were
associated with total WBC. In GCKR (MIM: 600842),
rs126032 (p.Leu446Pro [c.1337T>C]) was associated with
lower total WBC in the EA meta-analysis (p value ¼
8.13 3 10!13). This variant was also nominally associated
with lower neutrophil, lymphocyte, and basophil counts
in EAs, consistent with its association with total WBC.
The rs126032 variant was also associated with lower total
WBC in AAs (p value ¼ 0.014). In KIF9 (MIM: 607910),
rs2276853 (p.Arg573Trp [c.1717C>T]) was associated
with increased total WBC in the multi-ancestry meta-anal-
ysis (p value ¼ 3.29 3 10!9). The signal was largely driven

Figure 1. Manhattan Plots of p Values of White Blood Cell Traits
(A) Discovery association results in the combined all ancestries sample.
(B) Discovery association results in the European ancestry samples.
The combined all ancestry sample include European, African, Hispanic, East Asian, and South Asian ancestries. Genetic variants that
passed the array-wide significance threshold (p value < 2.0 3 10!7) are highlighted in red. Discovery genetic loci that replicated in in-
dependent samples are shown.
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Table 2. Variants Associated with White Blood Cell Traits

Trait
(Population) dbSNPID Chr Pos

Alt/
Ref EAF Gene Annotation

AA
Substitution

Discovery Replication Combined Meta-analysis

N Beta (SE) p N EAF Beta (SE) p N EAF Beta (SE) p phet

WBC (EA) rs1260326 2 27,730,940 C/T 0.58 GCKR missense,
splice site

p.Leu446Pro 108,596 !0.030
(0.005)

4.01 3
10!10

17,897 0.6 !0.044
(0.012)

2.66 3
10!4

126,493 0.58 !0.032
(0.004)

8.13 3
10!13

0.28

WBC (All) rs2276853 3 47,282,303 A/G 0.58 KIF9 missense p.Arg573Trp 132,764 0.023
(0.004)

3.65 3
10!8

17,897 0.6 0.025
(0.012)

3.00 3
10!2

150,661 0.58 0.023
(0.004)

3.29 3
10!9

0.86

WBC (All) rs185819a 6 32,050,067 C/T 0.51 TNXB missense p.His1161Arg 132,764 0.031
(0.005)

4.02 3
10!10

17,897 0.47 0.034
(0.015)

2.24 3
10!2

150,661 0.51 0.031
(0.005)

2.85 3
10!11

0.83

WBC (All) rs9374080 6 109,616,420 C/T 0.43 CCDC162P intronic
regulatory

132,764 0.023
(0.004)

4.01 3
10!8

17,897 0.46 0.025
(0.011)

2.55 3
10!2

150,661 0.43 0.023
(0.004)

3.15 3
10!9

0.84

WBC (EA) rs3747869 10 73,520,632 C/A 0.9 C10orf54
(DD1a)

missense p.Asp187Glu 108,596 0.040
(0.007)

4.26 3
10!8

17,897 0.9 0.083
(0.018)

6.40 3
10!6

126,493 0.9 0.046
(0.007)

1.42 3
10!11

0.03

WBC (EA) rs1935 10 64,927,823 G/C 0.49 JMJD1C missense p.Glu2353Asp 108,596 !0.026
(0.005)

2.46 3
10!8

17,897 0.46 !0.027
(0.012)

2.06 3
10!2

126,493 0.49 !0.026
(0.004)

1.57 3
10!9

0.93

WBC (EA) rs1292053 17 57,963,537 G/A 0.45 TUBD1 missense p.Met76Thr 108,596 !0.03
(0.004)

1.28 3
10!11

17,897 0.44 !0.027
(0.011)

1.51 3
10!2

126,493 0.45 !0.030
(0.004)

6.55 3
10!13

0.78

WBC (EA) rs4760 19 44,153,100 G/A 0.16 CD87
(PLAUR)

missense p.Leu272Pro 85,685 !0.043
(0.007)

2.51 3
10!10

17,897 0.15 !0.052
(0.015)

7.13 3
10!4

103,582 0.16 !0.044
(0.006)

8.34 3
10!13

0.6

WBC (EA) rs3865444 19 51,727,962 A/C 0.31 CD33 upstream 86,936 !0.037
(0.005)

3.51 3
10!12

17,897 0.32 !0.033
(0.012)

5.14 3
10!3

104,833 0.31 !0.036
(0.005)

6.81 3
10!14

0.77

WBC (All) rs2836878 21 40,465,534 A/G 0.26 ETS2-
PSMG1

intergenic 132,764 !0.025
(0.005)

8.36 3
10!8

17,897 0.26 !0.026
(0.012)

3.44 3
10!2

150,661 0.26 !0.025
(0.004)

8.41 3
10!9

0.89

NEU (EA) rs3747869 10 73,520,632 C/A 0.9 C10orf54
(DD1a)

missense p.Asp187Glu 60,851 0.053
(0.010)

2.11 3
10!8

16,669 0.9 0.073
(0.019)

1.17 3
10!4

77,520 0.9 0.057
(0.009)

1.65 3
10!11

0.34

NEU (EA) rs4760 19 44,153,100 G/A 0.16 CD87
(PLAUR)

missense p.Leu272Pro 56,112 !0.047
(0.008)

1.54 3
10!8

16,669 0.15 !0.044
(0.016)

5.55 3
10!3

72,781 0.16 !0.046
(0.007)

3.01 3
10!10

0.87

MON (All) rs4917014 7 50,305,863 G/T 0.28 C7orf72-
IKZF1

intergenic 57,183 !0.038
(0.007)

1.97 3
10!8

16,669 0.32 !0.048
(0.012)

8.92 3
10!5

73,852 0.29 !0.040
(0.006)

9.75 3
10!12

0.48

MON (EA) rs11625112 14 23,596,740 G/A 0.46 SLC7A8 intronic 44,325 !0.038
(0.007)

3.82 3
10!8

16,669 0.45 !0.031
(0.012)

7.04 3
10!3

60,994 0.46 !0.036
(0.006)

1.03 3
10!9

0.62

MON (EA) rs11642873a 16 85,991,705 C/A 0.2 IRF8-
LINC01082

intergenic 44,325 0.057
(0.008)

1.41 3
10!11

16,669 0.2 0.113
(0.014)

6.17 3
10!15

60,994 0.2 0.072
(0.007)

1.40 3
10!22

0.001

MON (All) rs1292053 17 57,963,537 G/A 0.45 TUBD1 missense p.Met76Thr 57,183 !0.036
(0.006)

2.55 3
10!9

16,669 0.44 !0.040
(0.012)

6.08 3
10!4

73,852 0.45 !0.037
(0.005)

6.53 3
10!12

0.76

LYM (EA) rs2229094 6 31,540,556 C/T 0.26 LTA missense p.Cys13Arg 47,105 0.046
(0.008)

1.89 3
10!8

16,711 0.25 0.078
(0.018)

8.54 3
10!6

63,816 0.26 0.051
(0.007)

3.14 3
10!12

0.09

(Continued on next page)
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by the association in EAs (p value ¼ 1.39 3 10!6) and was
apparent for both neutrophil and lymphocyte counts in
EAs and in multi-ancestry meta-analyses. In TNXB (MIM:
600985), rs185819 (p.His1161Arg [c.3428A>G]) was asso-
ciated with increased total WBCs in the multi-ancestry
meta-analysis (p value ¼ 2.85 3 10!11). The association
was consistently significant across EA and AA populations
and for all WBC sub-types. The effect allele frequency was
comparable between EAs and AAs but varied in the other
ancestry groups. In C10orf54 (MIM: 615608), rs3747869
(p.Asp187Glu [c.561T>G]) was associated with increased
total WBC in the EA meta-analysis (p value ¼ 1.42 3

10!11). Although rs3747869 was also associated with
neutrophil, monocyte, and eosinophil counts, the signal
was not consistent across ancestry groups. The effect
allele frequencies were markedly different between EA,
AA, HA, SA, and EAS ancestry groups. In JMJD1C (MIM:
604503), rs1935 (p.Glu2353Asp [c.7059G>C]) was associ-
ated with lower total WBC (p value ¼ 1.57 3 10!9) in
the EA meta-analysis. Although the rs1935 variant was
not consistently associated with total WBC across all
the major ethnic groups, it was significant in the HAs
(p value ¼ 5.58 3 10!3). Significantly low neutrophil,
lymphocyte, and eosinophil counts were also observed
for rs1935. In TUBD1 (MIM: 607344), rs1292053
(p.Met76Thr [c.227T>C]) was associated with lower total
WBC in the EA meta-analysis (p value ¼ 6.55 3 10!13).
This association was similar in EAs and AAs and for neutro-
phil, monocyte, and lymphocyte counts. Finally, in PLAUR
(MIM: 173391) the rs4760 (p.Leu272Pro [c.815T>C])
variant was associated with lower total WBC (p value ¼
8.34 3 10!13) in the EA meta-analysis. The effect allele fre-
quencies were highly discrepant across ancestries, perhaps
explaining why the association was observed only in EAs.
The rs4760 association with total WBC was almost entirely
due to its strong association with neutrophil counts.
Outsideof coding regions, an intronic variant (rs9374080)

in CCDC162P was associated with increased total WBC
in the multi-ancestry meta-analysis (p value ¼ 3.15 3

10!9). The association was consistent across EAs and AAs
and was observed for neutrophil and monocyte counts
and was especially strong for basophil counts. The
rs3865444 variant, just upstream of CD33 (MIM: 159590),
was associated with lower total WBC in the EA meta-
analysis (p value ¼ 6.81 3 10!14). The allele frequencies
were highly discrepant across ancestry groups and
rs3865444 was not significantly associated with total WBC
outside of the EAs. However, the association was consistent
across neutrophil, monocyte, and eosinophil counts.
Finally, an intergenic variant (rs2836878) near ETS2 (MIM:
164740) and PSMG1 (MIM: 605296) was associated with
lower total WBC in the multi-ancestry meta-analysis
(p value ¼ 8.41 3 10!9). The association was driven by the
EA signal, and the variant had different allele frequencies
across ancestry groups. The association with total WBC
was consistent across neutrophil, monocyte, and basophil
counts.T
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We identified a rare, missense variant in OR4C6
(rs144349650, p.Leu112Val [c.334C>G], EAF ¼ 0.00042)
that was significantly associated with lower total WBC in
the EA discovery analysis (p value ¼ 1.87 3 10!11; Table
S7). The allele frequency was rare in all ancestry groups
and did not replicate in additional samples of >17,000
EAs, perhaps due to low statistical power. Likewise, we
identified a burden of rare, missense variants in TAF3
(MIM: 606576) that was significantly associated with
increased total WBC in the EA discovery set (pVT ¼
1.58 3 10!6; Table S10). However, the signal did not repli-
cate in an additional independent 2,898 samples.

Neutrophil Count
In addition to the associations with total WBC, we identi-
fied two missense variants that were associated with
neutrophil count at exome-wide significance levels. The
effect estimate of the rs3747869 variant in C10orf54
for total WBC appeared to be a combination of effects
from neutrophil, monocyte, and eosinophil counts,
though the effect was strongest for neutrophils, largely
explaining the overall association with total WBC. The
association between rs4760 in PLAUR and total WBC also
appeared to be explained by the association with neutro-
phil counts.
The association between the rare, missense rs144349650

variant in OR4C6 was observed for neutrophil counts as
well as total WBC in the EA and multi-ancestry discovery
sets. In gene-based test,OR4C6was associated with neutro-
phil count (pSKAT ¼ 2.56 3 10!8; Table S10). Likewise, a
burden of rare, missense variants in ZNF439was associated
for neutrophil counts in the AA set (pVT ¼ 9.57 3 10!7;
Table S10). Neither the ZNF439 nor the OR4C6 gene-based
association signals replicated.

Monocyte Count
We found mostly non-coding variants associated with
monocyte counts at the exome-wide level. One exception
was the rs1292053 (p.Met76Thr) missense variant in
TUBD1, for the multi-ancestry meta-analysis (p value ¼
6.53 3 10!12). Although the association was consistent
across neutrophil and lymphocyte counts, the association
with total WBC was almost entirely driven by the strong
association with monocyte counts. An intergenic variant
(rs4917014) near C7orf72-IKZF1 (MIM: 603023) was asso-
ciated with lower monocyte count in the multi-ancestry
meta-analysis (p value ¼ 9.75 3 10!12). It was not associ-
ated with any other WBC sub-type. An intronic variant
(rs11625112) in SLC7A8 (MIM: 600749) was associated
with lower monocyte counts in the EA meta-analysis
(p value ¼ 1.03 3 10!9). We also found a secondary signal,
rs11642873 near IRF8 (MIM: 601565),37 that was associ-
ated with higher monocyte count in the EA meta-analysis
(discovery beta [p value] ¼ 0.072 [1.40 3 10!22], condi-
tional beta [p value] ¼ 0.054 [1.41 3 10!11]). Similar to
their association with monocyte count, both rs11625112
in SLC7A8 and rs11642873 near IRF8 had consistent asso-

ciations with basophil and eosinophil counts, but were not
seen in AAs and HAs.

Lymphocyte Count
An intronic variant (rs4763879) in CD69 (MIM: 107273)
was associated with decreased lymphocyte count in the
EA meta-analysis (p value ¼ 1.59 3 10!10). None of the
other sub-types showed an association with rs4763879.
The signal was not observed in AAs or HAs. A secondary
missense variant (rs2229094, p.Cys13Arg [c.37T>C]) in
LTA (MIM: 153440) was associated with higher lympho-
cyte count in the EA meta-analysis (p value ¼ 3.14 3

10!12). The association was consistent across EAs and
AAs, as well as for neutrophil counts, basophil counts,
and for total WBC. LTA-rs2229094 is located near a
previously reported WBC-associated SNP rs2524079 in
LOC101929772,6 though the LD between these variants
is quite low (r2 ¼ 0.04). Finally, although we observed
a rare, missense variant in TRIM6 (MIM: 607564)
(rs199694284, p.Val258Ala [c.773T>C], EAF in EAs ¼
5.25 3 10!5, discovery p value ¼ 7.56 3 10!8) associated
with lymphocyte counts in EAs (Table S7), the association
did not replicate.

Basophil Count
In the EA meta-analysis, we identified a 30 UTR variant
(rs2295764) in ASXL1 (MIM: 612990) associated with
lower basophil count (p value¼ 1.463 10!10). This variant
was also associated with lower eosinophil and monocyte
counts. The allele frequencies differed across ethnic groups
and the association was not observed in AAs or HAs.

Shared Associations of WBC Loci with Disease
Phenotypes
To assess the shared association between these WBC loci
and immune-mediated diseases and other relevant clinical
phenotypes, we performed a PheWAS in 29,722 individ-
uals and queried published GWAS databases of autoim-
mune diseases including IBD, MS, RA, SLE, and T1D. The
majority of WBC variants discovered by the present study
were associated with multiple autoimmune diseases.
PheWAS identified TNXB (rs185819, p.His1161Arg) associ-
ated with risk of MS and SLE (Figure 2, Table 3). In lookups
of GWAS databases, after correcting for multiple testing of
16 variants and 15 inflammatory diseases (p value< 2.083

10!4), disease-variant associations were additionally de-
tected for MS (CD69, TUBD1), IBD (GCKR, LTA, TNXB,
IKZF1, TUBD1, ETS2-PSMG1), SLE (LTA, IRF8, TNXB,
IKZF1), RA (TNXB), PBC (LTA), and T1D (CD69, TNXB).
Additional associations between immunologically relevant
clinical phenotypes and WBC trait variants included selec-
tive immunoglobulin A deficiency (MIM: 137100) with
CD69 and IKZF1 (p value < 1.90 3 10!11) and between
IRF8 and systemic sclerosis (MIM: 181750) (p value ¼
2.30 3 10!12). The inflammatory marker C-reactive pro-
tein (CRP) was strongly associated with GCKR and ETS2-
PSMG1 (p value < 4.00 3 10!8) (Tables 3 and S11).
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Discussion

In this large-scale exome-wide association meta-analysis of
WBC related traits in ~157,622 discovery and replication
samples from five ancestries, we discovered 14 primary
and 2 secondary SNV associations with total WBC and dif-
ferential counts in EAs and the combined multi-ancestry
samples, substantially increasing the number of loci
associated with these hematologic traits. We observed
shared genetic mechanisms influencing variations in
WBC counts and susceptibility to chronic inflammatory
and autoimmune diseases. These include genes and path-
ways involved in hematopoietic stem cell differentiation,
apoptosis, cell adhesion, centrosome, and microtubule
function.
Our statistical thresholds to declare significance at the

discovery stage (p < 2 3 10!7 in the single-variant
analyses) was adjusted for the approximate number of
variants genotyped on the ExomeChip. Although we
did not explicitly correct for testing multiple traits,
the p values of our reported variants (Table 2) all
pass the 5.0 3 10!8 standard of evidence for genome-
wide association studies of correlated traits.38 Further-
more, we relied on independent replication to confirm
our observed associations. Despite the limited size of

our replication set, it is noteworthy that we robustly
replicated both known and novel WBC variants, suggest-
ing a very low probability of reporting false-positive
associations.
To quantitatively assess the contribution of loci identi-

fied by our Exomechip analysis, we have performed a
comparative analysis of the proportion of total WBC
phenotypic variance explained in a random sub-sample
of 17,306 EAs from our largest discovery cohort, the WHI
study. The proportion of variance in total WBC explained
by the 28 previously known GWAS loci is 0.0137. The pro-
portion of variance explained by the combination of
known GWAS loci plus the ten additional Exomechip-
identified loci we report is 0.0183. Thus, our Exomechip
analysis has resulted in a 34% increase in the proportion
of variance explained for total WBC in whites. These re-
sults suggest the possibility that exonic variants and/or
variants not well-captured by traditional GWAS arrays
may make an important contribution to the genetic archi-
tecture of WBC traits.

Loci Involving Hematopoietic Lineage Differentiation
and Activation of Cell Surface Receptors
Consistent with the pattern of association of the CD33 in-
dex SNP rs3865444 with lower total WBC count involving

Figure 2. Pleiotropy Plot Showing Shared Genetic Loci between WBC Traits and Autoimmune Inflammatory and Other Immune-
Mediated Diseases
The thickness of each line connecting genes withWBC subtypes and immune-mediated diseases corresponds to the observed strength of
association in p values. p values for gene-disease associations were derived from published genome-wide association studies (see Material
andMethods section for references). Abbreviations are as follows: AD, Alzheimer disease; AS, ankylosing spondylitis; BAS, basophils; CD,
Crohn disease; ICUS, idiopathic cytopenia of undetermined significance; IBD, inflammatory bowel diseases; LYM, lymphocytes; MON,
monocytes; MDS, myelodysplastic syndrome; MS, multiple sclerosis; NEU, neutrophils; PBC, primary biliary cirrhosis; RA, rheumatoid
arthritis; SIgAD, selective immunoglobulin A deficiency; SJS/TEN, Stevens-Johnson syndrome/toxic epidermal necrolysis; SLE, systemic
lupus erythematosus; SS, systemic sclerosis; T1D, type 1 diabetes mellitus; UC, ulcerative colitis, WBC, white blood cells.
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all myeloid lineages (and lower platelet count) (Table S12),
CD33 is an early myeloid differentiation antigen and
cell surface receptor that binds sialic acid-containing
ligands and mediates diverse inhibitory functions of
WBC in the innate immune system.39 CD33 is also highly

expressed on the surface of acute myeloid leukemia (AML)
cells. CD33 rs3865444 is in complete LD with CD33
rs12459419 (p.Ala14Val), the presumed functional variant
that results in lower full-length CD33 expression due to
skipping of exon 2.40

Table 3. Association ofWhite Blood Cell Trait Variants with Immune-Mediated Diseases and Clinical Phenotypes in Previous Genome-wide
Association Studies

Trait (Population) dbSNP ID Chr Pos Alt/Ref Gene Phenotype Sample Size p Valuea

WBC (EA) rs1260328 2 27,730,940 C/T GCKR inflammatory bowel disease 96,486 1.27 3 10!4

LYM (EA) rs2229094b 6 31,540,556 C/T LTA Crohn disease 69,268 7.81 3 10!7

LYM (EA) rs2229094b 6 31,540,556 C/T LTA systemic lupus erythematosus 23,209 3.09 3 10!7

LYM (EA) rs2229094b 6 31,540,556 C/T LTA primary biliary cirrhosis 21,216 1.31 3 10!5

WBC (All) rs185819 6 32,050,067 C/T TNXB multiple sclerosisc 22,850 2.16 3 10!6

WBC (All) rs185819 6 32,050,067 C/T TNXB type 1 diabetes 33,394 3.29 3 10!9

WBC (All) rs185819 6 32,050,067 C/T TNXB ulcerative colitis 72,647 2.91 3 10!6

WBC (All) rs185819 6 32,050,067 C/T TNXB systemic lupus erythematosusc 23,209 2.32 3 10!37

WBC (All) rs185819 6 32,050,067 C/T TNXB rheumatoid arthritis 103,558 3.90 3 10!53

MON (All) rs4917014 7 50,305,863 G/T C7orf72-IKZF1 systemic lupus erythematosus 32,444 8.10 3 10!5

MON (All) rs4917014 7 50,305,863 G/T C7orf72-IKZF1 inflammatory bowel disease 96,486 4.59 3 10!5

MON (All) rs4917014 7 50,305,863 G/T C7orf72-IKZF1 Crohn disease 69,268 1.49 3 10!4

MON (All) rs4917014 7 50,305,863 G/T C7orf72-IKZF1 Stevens-Johnson syndrome/
toxic epidermal necrolysis

1,129 8.00 3 10!11

MON (All) rs4917014 7 50,305,863 G/T C7orf72-IKZF1 selective immunoglobulin a
deficiency

2,748 2.80 3 10!23

LYM (EA) rs4763879 12 9,910,164 A/G CD69 type 1 diabetes 38,522 1.90 3 10!11

LYM (EA) rs4763879 12 9,910,164 A/G CD69 multiple sclerosis 38,135 2.18 3 10!5

LYM (EA) rs4763879 12 9,910,164 A/G CD69 selective immunoglobulin A
deficiency

2,748 1.90 3 10!11

MON (EA) rs11642873 16 85,991,705 C/A IRF8-LINC01082 systemic lupus erythematosus 23,209 3.56 3 10!10

MON (EA) rs11642873 16 85,991,705 C/A IRF8-LINC01082 systemic sclerosis 14,853 2.30 3 10!12

WBC (EA); MON (All) rs1292053 17 57,963,537 G/A TUBD1 multiple sclerosis 38,135 7.47 3 10!6

WBC (EA); MON (All) rs1292053 17 57,963,537 G/A TUBD1 Crohn disease 96,486 8.53 3 10!6

WBC (EA); MON (All) rs1292053 17 57,963,537 G/A TUBD1 inflammatory bowel disease 96,486 9.61 3 10!5

WBC (EA); NEU (EA) rs4760 19 44,153,100 G/A CD87 (PLAUR) ulcerative colitis 72,647 1.51 3 10!4

WBC (EA) rs3865444 19 51,727,962 A/C CD33 Alzheimer disease 59,716 1.60 3 10!9

BAS (EA) rs2295764 20 31,025,163 G/A ASXL1 somatic mutations in MDS,
CML, and ICUS

– –

WBC (All) rs2836878 21 40,465,534 A/G ETS2-PSMG1 ankylosing spondylitis 9,609 4.90 3 10!12

WBC (All) rs2836878 21 40,465,534 A/G ETS2-PSMG1 Crohn disease 69,268 2.43 3 10!6

WBC (All) rs2836878 21 40,465,534 A/G ETS2-PSMG1 ulcerative colitis 72,647 2.05 3 10!20

WBC (All) rs2836878 21 40,465,534 A/G ETS2-PSMG1 inflammatory bowel disease 96,486 3.70 3 10!22

WBC (All) rs2836878 21 40,465,534 A/G ETS2-PSMG1 selective immunoglobulin A
deficiency

2,748 1.40 3 10!8

Abbreviations: Chr, chromosome; Pos, basepair position; Alt, effect allele; Ref, reference allele; CML, chronic myelogenous leukemia; ICUS, Idiopathic cytopenia of
undetermined significance; MDS, myelodysplastic syndrome, WBC, white blood cell; NEU, neutrophil; MON, monocyte; LYM, lymphocyte; BAS, basophil.
aSignificant results are shown after correcting for multiple testing of 16 variants and 15 diseases (p< 2.083 10!4). When multiple studies report the same variant-
trait associations, results from the largest sample size are presented here.
bLD r2 between rs2229094 and rs1799964 is 0.75.
cPhenome-wide association results. Permutation p value for association with multiple sclerosis was 0.0122.
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PLAUR encodes for the glycosyl-phosphatidylinositol-
anchored urokinase plasminogen activator receptor
(UPAR). UPAR, also known as CD87, is a differentiation
antigen on cells of the myelomonocytic lineage and also
an activation antigen on monocytes and T lympho-
cytes.41,42 The deleterious coding variant of CD87
rs4760A>G (p.Leu272Pro)36 is also a strong eQTL for
CD87 expression in monocytes and whole blood (Table
S13). In addition to its role in plasminogen activation
and fibrinolysis, UPAR is involved in cell adhesion, migra-
tion, and chemotaxis and is a regulator of the uptake by
macrophages of apoptotic neutrophils.43 It is possible
that the latter mechanismmight explain the selective asso-
ciation of rs4760 with lower neutrophil count.
The CD69 intronic allele rs4763879G>A was associated

with lower lymphocyte count but not with other WBC
types. Accordingly, CD69 encodes a calcium-dependent
lectin superfamily of type II transmembrane cell surface re-
ceptor involved in regulation of lymphocyte prolifera-
tion.44 As an early activation marker of lymphocytes,
CD69 inhibits egress of lymphocytes into the circulation
by downregulating sphingosine-1-phosphate receptor
type 1 (MIM: 601974).44 Notably, CD69 rs4763879 corre-
lates with the expression of CD69 in monocytes and
with the expression of C-type lectin domain family
member genes CLECL1 and CLEC2D in lymphoid cells
(Table S13).
The intronic variant rs9374080 of non-coding RNA/

pseudogene CCDC162P has been previously associated
with red blood cell traits—lower mean corpuscular vol-
ume, mean corpuscular hemoglobin45—and with platelet
traits (Tables S11 and S12). In this study, we extend the as-
sociation of rs9374080 to higher total WBC and myeloid-
derived cell counts, including basophil count (Table S8).
The index SNP is located ~70 kb 30 of CD164 (endolyn)
(MIM: 603356), which encodes a small transmembrane
sialomucin protein on the surface of early hematopoietic
progenitors, maturing erythroid cells, and activated baso-
phils.46 CD164 regulates CXCR4/CXCL12 signaling in he-
matopoietic precursor cells.47 The region of association is
located within a putative regulatory region enriched in
epigenomic marks and ChIP-seq sites for various hemato-
poietic transcription factors (GATA1, TAL1) in K562
erythroleukemia and lymphoblastoid cell lines.48 These
observations fit with the broad pattern of association of
this variant with multiple blood cell lineages.

Loci Involving Hematopoietic Transcription Factors
and Epigenetic Modifiers
We identified variants in or near multiple genes encoding
hematopoietic transcription factors that are associated
with WBC traits. These loci include IRF8-LINC01082,
C7orf72-IKZF1, SLC7A8-CEBPE, JMJD1C, ASXL1, and
ETS2-PSMG1.
The 30 UTR variant rs2295764 of ASXL1, which was

significantly associated with ASXL1 transcript expression,
was associated with lower basophil count and to a lesser

degree with lower monocyte and eosinophil counts and
also to some extent with higher red cell distribution width
(Tables S12 and S13). ASXL1 is a chromatin binding
transcriptional regulator of the polycomb group and he-
matopoietic tumor suppressor gene.49 JMJD1C is also an
epigenetic regulator of gene expression, probably through
histone demethylation.50 The association between JMJD1C
and lower WBC counts (this study), platelet count, mean
platelet volume, and platelet reactivity51 indicate multi-
lineage effects on hematopoiesis. JMJD1C was originally
identified as a ligand-dependent interacting partner of
thyroid hormone and androgen receptors.52 In human
myeloid leukemia cells, JMJD1C functions as a coactivator
for the leukemogenic transcriptional complex RUNX1-
RUNX1T1 to increase AML cell proliferation and sur-
vival.53 An intergenic variant rs2836878 located between
ETS2 and PSMG1 showed evidence of multi-lineage associ-
ation with lower total WBC count across all myeloid cell
types and to a lesser extent with lower platelet count and
higher hemoglobin (Table S12); rs2836878 is a whole-
blood eQTL for ETS2 (Table S13). ETS2 is another proto-
oncogene that encodes for a transcription factor involved
in stem cell development, cell senescence, and death,
whereas the product of PSMG1 is involved in maturation
of proteasomes. ETS2, which is highly expressed in mono-
cytes but not in granulocytes, has been shown to be
involved in macrophage differentiation, regulation of
megakaryocytic gene expression, T cell development, and
phenotypic switch from erythroid to megakaryocytic
development in hematopoietic cells.54

We identified several variants associated with monocyte
count in loci that involve hematopoietic transcription fac-
tor genes (IRF8, SLC7A8, and IKZF1), further supporting
their role in regulation of myelopoiesis and granulocyte/
monocyte lineage fate. The minor C allele of rs11642873,
located 35 kb 30 of IRF8, was associated with higher mono-
cyte count (and to a lesser degree with higher eosinophil
and basophil counts) (Table S8). In eQTL analysis, an
IRF8 variant rs17445836 is in moderate LD with the IRF8
rs11642873 variant (r2 ¼ 0.48) that has a cis-regulatory
effect on IRF8 expression in CD14þ monocytes (Table
S13). IRF8 encodes a transcription factor critical for
myeloid lineage commitment by promoting differentia-
tion of monocytes/dendritic cells and suppressing granul-
poiesis.55 Irf8!/! mice have a myeloproliferative disorder
with markedly increased number of macrophages and
granulocytes in bone marrow, spleen, and lymph nodes
as well as increased number of granulocytes in peripheral
blood, suggesting a tumor-suppressive role of IRF8.56

Another non-coding variant associated with lower
monocyte count, and to a lesser extent with lower
basophil and eosinophil counts, was the intronic variant
rs11625112 of SLC7A8, which encodes an amino acid
transporter highly expressed in absorptive epithelia of
the kidney and small intestine and also in the brain.57

The index SNP is located within a blood cell DNase hyper-
sensitivity site ~8 kb upstream of CEBPE, which encodes a
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hematopoietic transcription factor essential for terminal
differentiation and functional maturation of granulo-
cytes.58 Recent data also suggest a role of CEBPE isoforms
in differential regulation of eosinophil production as well
as in the monocyte-granulocyte lineage decision.59

The transcription factor encoded by IKZF1 or Ikaros was
initially described as a regulator of lymphoid lineage differ-
entiation and hematopoietic progenitor cell self-renewal.60

An Ikaros isoform selectively expressed in myeloid precur-
sor cells was subsequently found to regulate myeloid
differentiation.60 The minor allele of intergenic variant
rs4917014 in C7orf72-IKZF1 associated selectively with
lower monocyte count is located ~50 kb upstream of
IKZF1 within an LD block enriched in hematopoietic cell
DNase hypersensitivity sites and enhancer histone
markers, several of which are also located within ChIP-
seq binding sites for the myeloid transcription factor
PU.1.48 The index SNP is also a monocyte and whole blood
trans-eQTL for several immune response genes (Table S13).
Further studies are required to assess whether the upstream
IKZF1 or CEBPE regulatory elements harboring the index
SNP are important for isoform- or lineage-specific mono-
cyte development.

Loci Involved in Regulation of Cell Death and
Apoptosis
Apoptosis regulates hematopoietic stem cells and main-
tains the balance between cell proliferation and cell
death.61 Altered apoptotic processes contribute to the
development of autoimmune and other inflammatory dis-
eases.62 We identified associations betweenWBC traits and
coding variants in two additional genes involved in
apoptosis. C10orf54 rs3747869 (p.Asp187Glu) was associ-
ated with higher total WBC and neutrophil counts. The
product of C10orf54 (also known as Death Domain
1-alpha, DD1a), a direct transcriptional target of p53, regu-
lates apoptosis and clearance of apoptotic cells, processes
that are critical for resolution of inflammation, immune
tolerance, and regulation of autoimmune responses.63

DD1a is exclusively expressed within the hematopoietic
compartment (monocytes, mature T cells, and macro-
phages) and functions as a negative immune checkpoint
regulator for T cell activation and response.64

LTA rs2229094 (p.Cys13Arg) was associated with higher
lymphocyte count. LTA encodes a member of the tumor
necrosis factor family involved in lymphoid organ devel-
opment and apoptosis.65 Loss of LTA was associated with
a 4-fold increase in B lymphocytes in peripheral blood
count in mice.65 The index missense SNP is also a cis-
eQTL for LTA and NFKBIL1 (MIM: 601022) (Table S13).

Loci Involved in Other Cellular and Inflammatory
Processes
We identified several missense variants (TNXB rs185819
[p.His1161Arg], TUBD1 rs1292053 [p.Met76Thr], and
KIF9 rs2276853 [p.Arg573Trp]) in genes involved in other
cellular processes that might be relevant to WBC produc-

tion or immune function. TNXB encodes a member of
the tenascin family of extracellular matrix glycoproteins
and inhibits cell adhesion and migration.66 The index
SNP localizes to the major histocompatibility complex
class III region on chromosome 6 and overlaps ATF6B
and CYP21A2 at its 50 and 30 ends, respectively. The
missense SNP is also an eQTL in blood or lymphoblastoid
cell lines for several class II HLA genes (Table S13). The
pattern of association of TNXB rs185819 suggests an effect
at an early stage of myeloid and lymphoid differentiation.
ATF6B, a member of the ATF6-related family of transcrip-
tion factors that operate in the unfolded protein
response,67 is also a key virulence factor for Toxoplasma
gondii.68

Although the role of TUBD1 and KIF9 on hematopoiesis
is not known, both genes are involved in the structure and
function of microtubules and centrosomes that are impor-
tant for cell division and proliferation.69 TUBD1 encodes
for delta-tubulin microtubule protein that is associated
with centrosome structure and function. The TUBD1
rs1292053 (p.Met76Thr), which was associated with both
total WBC and monocyte counts, and to some extent
with red cell and platelet parameters, is in LD with a num-
ber of SNPs in neighboring genes RPS6KB1 and RNFT1 and
is a blood eQTL for RNFT1 (Tables S12 and S13). RPS6KB1
encodes a member of the ribosomal S6 kinase family of
serine/threonine kinases and is part of the PI3K/AKT/
mTOR signaling pathway that plays a central role in a
wide spectrum of cellular activities, including cell prolifer-
ation, survival, and differentiation.70 The PI3K pathway is
also involved in Toll-like receptor (TLR) signaling and
release of cytokines from macrophages,71 and a proxy
SNP of TUBD1 rs1292053 has been associated with
CRP.72 KIF9 is a member of the kinesin family of genes
related to microtubule binding and microtubule motor ac-
tivity. The KIF9 rs2276853 variant is in LD with about 50
other variants spanning two other genes, SETD2 and
KLHL18, several of which are within epigenomic blood
cell marks and eQTLs for KIF9, KLHL18, and NBEAL2.48

The GCKR rs1260326 variant is an eQTL for SNX17,
which has been associated with T cell activation and is a
binding protein for human papillomavirus L2 capsid
protein and for NRBP1, which binds a Dengue virus
protein.48,73

Relationship of WBC Loci to Autoimmune and
Chronic Inflammatory Diseases
Abnormal immune response by lymphocytes and other
white blood cells directed against self-antigens can lead
to tissue injury and development of autoimmune dis-
eases.74 Our results add to recent evidence that genetic fac-
tors controlling WBC and immune cell counts contribute
to autoimmune disease risk.75 Several loci involve regula-
tion of cellular mechanisms critical in the development
of autoimmune diseases such as modulation of autoim-
mune reactivity (CD69)76 and apoptosis (LTA, DD1a,
CD87).43,63
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The majority of our WBC-associated loci that showed
substantial overlap were also associated with risk of various
autoimmune and inflammatory diseases including IBD,
RA, SLE, T1D, PBC, systemic sclerosis, Alzheimer disease,
and Stevens-Johnson syndrome (Figure 2, Table 3).
Although many of these genetic susceptibility loci are
shared between different autoimmune diseases, other loci
appear to be more restricted to particular cellular contexts.
For example, there is an over-representation of SLE loci
expressed selectively in B cells; RA-associated loci are pref-
erentially expressed in CD4þ effector T memory cells;
epithelial-associated stimulated dendritic cell genes in
Crohn disease; and monocyte-specific eQTLs among
neurodegenerative disease variants.77,78

Abnormal inflammatory response and activation of mi-
croglial cells are linked with the development of AD and
other neurodegenerative diseases. The WBC-associated
gene CD33 is among the inflammation-related AD risk
loci identified by GWASs.79 A variant in this gene was
shown to modulate CD33 exon 2 splicing efficiency, lead-
ing to abnormal activation of microglial cells that are
tissue-resident macrophages of the brain derived from
monocyte lineage cells.79 In eQTL analysis of neuropatho-
logically normal human brain tissues, CD33 rs3865444 is a
cis-eQTL of C-type lectin domain family 11 member A
(CLEC11A) that functions as growth factor for hemato-
poietic progenitor cells.80 Several of the same loci are
involved in susceptibility to infectious diseases (IRF8 and
mendelian susceptibility to mycobacterial disease [MIM:
209950],81 TNXB associated with T. gonadii and climatic
adaptation,68,82 malaria with ABO [MIM: 110300] and
DARC,3,83 CD87with clearance of bacteria84), highlighting
the evolutionary trade-offs between protection against
pathogens and risk of chronic disease later in life.

Relationship of WBC Loci to Hematologic Disease and
Therapy
Hematopoiesis is controlled by the differential expression
of key transcription factors that act cooperatively to main-
tain a well-orchestrated balance of hematopoietic stem cell
self-renewal and differentiation.85 These functions of tran-
scription factors are frequently dysregulated in leukemia
by chromosomal translocations, mutations, or aberrant
expression and lead to abnormal self-renewal. Several of
the WBC loci have additional relationships to hemato-
logic disease and therapeutics. CD33 is expressed in the
brain and on AML blasts and leukemic stem cells and
has therefore been exploited therapeutically as a target
for anti-leukemic therapy.40 The CD33 rs3865444 and
rs12459419 variants associated with lower WBC count
and alternative splicing of exon 2, respectively, have
been associated with both Alzheimer disease risk and
AML treatment efficacy.40 The exon 2 region of CD33 is
important for sialic acid binding, microglial cell phagocy-
tosis of beta-amyloid, and an epitope recognized by the
antibody-targeted chemotherapy agent gemtuzumab ozo-
gamicin.40,86 CD87 is expressed on various immune cells

including neutrophils, monocytes, macrophages, T cells,
and basophils, as well as endothelial cells and hepato-
cytes.41,87 The cleaved soluble form of CD87 might have
a role in hematopoietic stem/progenitor cell mobiliza-
tion.88

Somatic mutations in ASXL1 are associated with risk of
myelodysplastic syndrome (MDS [MIM: 614286]), chronic
myelomonocytic leukemia (CMML [MIM: 607785]),
and idiopathic cytopenia of undetermined significance
(ICUS).49,89,90 Knockdown of Asxl1 in mouse results in
impaired lymphoid and myeloid differentiation and
multi-lineage cytopenias.91 Collectively, these results sug-
gest that both germline and somatic mutations in ASXL1
cause lower blood cell counts. The transcription factor
ETS2 has been shown to regulate phenotypic switch
from erythroid to megakaryocyte in acute megakaryocytic
leukemia (AMKL), and overexpression of ETS2 results in
altered sensitivity to chemotherapy drugs.54 Recent studies
have shown that IKZF1 deletions and mutations that
caused reduction of Ikaros activity are highly associated
with development of acute lymphoblastic leukemia.92,93

On the other hand, depletion of JMJD1C leads to growth
impairment of a variety of leukemic cell types without
noticeable effects on normal hematopoietic cells.52 There-
fore, JMJD1C is a potentially relevant drug target for
leukemia.
Besides the single-variant association results, we con-

firmed previously reported gene-based association results
for WBC count (CXCR2)12 and monocytes (IL17RA) (N.P.,
U.M.S., J.B.-J., and M.-H.C., unpublished data). We also
identified an additional gene putatively associated with
WBC count (TAF3). IL17RA is widely expressed in myelo-
monocytic cells, lymphocytes, and bone marrow stromal
cells and is part of the IL-17 cytokine signaling pathway
that plays role in hematopoiesis, promotes inflammation,
and is implicated in autoimmune diseases such as psoria-
sis, RA, and IBD.94 TAF3, which encodes for a TATA-box
binding protein, is located near GATA3, a transcription fac-
tor important for T lymphocyte differentiation. Variants in
TAF3 are associated with mean corpuscular hemoglobin
concentration95 whereas GATA3 variants have been associ-
ated with susceptibility to hematologic malignancies.96

Despite our large sample size, power to detect rare variants
of more modest effect, either individually or aggregated
into gene-based tests, may be limited. Future studies will
require enormous sample sizes, probably considerably
larger than in the current study, in order to detect addi-
tional rare variants (both individually and in aggregate)
of moderate effect sizes associated with complex traits.
Our study has both strengths and limitations. By

combining data from 25 studies world-wide, we were able
to investigate the effect sizes and allele frequencies of var-
iants in multiple ancestry groups. Variants with consistent
effects across ancestries serve as strong candidates for
causal variants. In addition to our ability to investigate
how genetic variants influenceWBC sub-types, our discov-
ery analyses were well powered to detect moderate effect

34 The American Journal of Human Genetics 99, 22–39, July 7, 2016



sizes. Indeed, although we did not correct for testing seven
different phenotypes in three different meta-analyses, the
combined p values of our reported variants (Table 2) all
pass the 5.0 3 10!8 standard of evidence for genome-
wide association studies of correlated traits.38 We note
that some cohorts did not measure a differential WBC
in addition to total WBC, which limited our ability to
assess associations with specific WBC subtypes in some
instances.
In conclusion, by combining WBC exome-array analysis

with PheWAS and functional annotation of variants, we
identified likely causal variants associated with total and
differential WBC counts as well as risk of autoimmune
and inflammatory diseases. These results shed light on ge-
netic mechanisms that regulate WBC counts and suggest a
shared genetic architecture with predisposition to autoim-
mune and chronic inflammatory diseases. Future studies in
model organisms are required to elucidate the underlying
molecular mechanisms of how these genes result in varia-
tions in WBC count and development of autoimmune
diseases.
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Supplemental Figure 

Figure S1. Quantile-quantile plots of p-values of white blood cell traits. Results of the three sets of discovery 
meta-analyses in combined all ancestries (ALL), European ancestry (EA), and African ancestry (AA) individuals 
are shown here. The combined all ancestry samples include Hispanic Americans, East Asians, and South Asians 
in addition to EAs and AAs. 

 

 

 



Figure S1. Continued  

 

 



Figure S2. Manhattan plots of discovery p-values of white blood cell traits in African Americans 
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See Table S1 and Table S2 in the accompanying Excel file. 

 

 



Table S3. Sample size across ethnicities for white blood cell exome-wide association analysis 

 Total WBC  Neutrophil  Monocyte  Lymphocyte  Basophil  Eosinophil 
Study Ethnicity  Ethnicity  Ethnicity  Ethnicity  Ethnicity  Ethnicity 

 EA AA HA EAS SA  EA AA HA EAS SA  EA AA HA  EA AA HA  EA AA HA/HL  EA AA HA 
Discovery                            AGES 2,955      2,954      2,954 368   2,954        2,954   ARIC 10,345 2,821     6,792 368     6,792    6,792 368   6,792 368   6,792 368  BIOME 1,043 2,328 3,319    636 1,981 2,688    10,209 1,981 2,688  636 1,981 2,688  636 1,981 2,688  636 1,981 2,688 
BIOVU - I 21,276 1,921     10,208 909     636 910   10,218 911   14,903 1,357      BIOVU - II  1,020      385      384    385    393      CARDIA 2,110 1,946     2,110 1,942     2,095 1,928   2,110 1,942   1,637 1,350   1,955 1,762  CHS 4,197 776                          ECGUT 974      973      973    973    962    968   FHS 5,610      2,314      2,314    2,314    2,314    2,314   SOLID TIMI-52 8,025 198 874 254 116  8,026 198 874 251 116                 STABILITY 8,490 118 500 714 348  8,487 118 500 714 347                 HABC 1,251      1,251      1,251    1,251    1,251    1,251   HANDLS  834      834      834    834    813    832  JHS  2,039      2,027      2,026    2,028    1,898    1,989  LBC1921 475      473      473    473           LBC1936 963      963      963    963           MESA 1,266 750 843    1,122 673 763    1,123 675 764  1,121 675 762  1,123 673 765  1,121 671 762 

MHIBB 7,911      6,978      6,978    6,978    6,978    6,978   REGARDS  5,030                          RS 2,794                2,758           SHIP 7,251      4,076      4,076    4,076    4,075    4,077   WHI 21,660 3,469     3,488 684     3,488 684   3,488 684   3,467 676   3,471 679  
Total per ancestry 108,596 23,250 5,536 968 464  60,851 10,119 4,825 965 463  44,325 9,790 3,452  47,105 9,808 3,450  44,138 9,509 3,453  32,517 8,282 3,450 

Total per trait     138,814      77,223    57,567    60,363    57,100    44,249 
Replication                            AIRWAVE 14,887      14,887      14,887    14,887    14,887    14,887   BIOVU-Replication 

(EA) 1,987      888      888    888    905       
FINCAVAS 911      397      397    397    397    440   GeneSTAR 1,023      894      894    937           

Total per ancestry 18,808      17,066      17,066    17,109    16,189    15,327   
Total per trait     18,808      17,066    17,066    17,109    16,189    15,327 
Grand Total     157,622      94,289    74,633    77,472    73,289    59,576 

Abbreviations: EA, European Ancestry; AA, African Ancestry; HA, Hispanic American; EAS, East Asian; SA, South Asian. 

 

 



Table S4. Mean and standard deviations of white blood cell traits in participating cohorts of the Blood-Cell Consortium 

Study Age % Female Total WBC Neutrophil Monocyte  Lymphocyte Basophil Eosinophil 
AIRWAVE 40.87 (9.03) 37.3 6.52 (1.71) 3.94 (1.34) 0.4 (0.18) 1.8 (0.53) 0.06 (0.04) 0.2 (0.12) 
n 14887 5550 14887 14886 14887 14886 14865 14866 
AGES 76.4 (5.5) 57.9 6.05 (1.81) 3.55 (1.30) 0.541 (0.0178) 1.74 (0.972) 0.0286 (0.0256) 0.207 (0.145) 
n 2953 1711 2955 2954 2954 2954 2954 2954 
ARIC-AA 56.5 (5.8) 62.8 5.6 (1.9) 3.1 (1.4) 0.3 (0.1) 2.0 (0.6) 0.1 (0.0) 0.1 (0.1) 
n 2832 1779 2832 369 369 369 160 355 
ARIC-EA 57.3 (5.7) 53 6.2 (2.0) 3.8 (1.4) 0.4 (0.2) 1.8 (0.7) 0.1 (0.0) 0.2 (0.1) 
n 10347 5489 10346 6792 6792 6792 2351 3893 
BioME-AA 57 (14) 38.6 6.6 (2.2) 3.8 (1.8) 0.5 (0.2) 2.0 (0.8) 0.0 (0.0) 0.2 (0.1) 
n 2653 1024 2329 1966 1966 1966 1966 1966 
BioME-EA 68 (11) 38.9 7.2 (2.9) 4.7 (2.4) 0.6 (0.2) 1.7 (1.6) 0.0 (0.0) 0.2 (0.1) 
n 1090 424 1046 634 634 634 634 634 
BioME-HA 61 (15) 62 7.4 (2.3) 4.6 (1.9) 0.6 (0.2) 2.0 (0.8) 0.0 (0.0) 0.2 (0.2) 
n 3640 2258 3319 2660 2660 2660 2660 2660 
BioVU-I-EA 56.42 (16.82) 54.8 7.87 (5.34) 5.03 (3.16) 0.64 (0.54) 1.88 (2.76) 0.0456 (0.0433) NA 
N 21276 11654 21276 10208 10209 10218 14903 NA 
BioVU-I-AA 49.58 (18.37) 61.1 7.30 (3.45) 4.56 (0.04) 0.59 (0.32) 2.06 (3.44) 0.0337 (0.0341) NA 
n 1921 1174 1921 909 910 911 1357 NA 
BioVU-II-EA 50.93 (15.22) 100 7.75 (2.58) 4.93 (2.58) 0.58 (0.27) 1.9 (0.81) 0.036 (0.026) NA 
n 2298 2298 1987 888 888 888 928 NA 
BioVU-II-AA 39.40 (13.60) 100 7.63 (3.17) 4.58 (3.14) 0.56 (0.33) 2.53 (5.91) 0.0346 (0.0497) NA 
n 1375 1375 1020 385 384 385 393 NA 
CARDIA-EA 25.41 (3.36) 52.7 6.25 (1.78) 3.50 (1.40) 0.32 (0.18) 2.13 (0.65) 0.04 (0.05) 0.17 (0.14) 
n 2110 1113 2110 2110 2095 2110 1637 1955 
CARDIA-AA 24.23 (3.77) 56.3 5.90 (1.95) 3.12 (1.49) 0.31 (0.17) 2.24 (0.83) 0.05 (0.04) 0.16 (0.13) 
n 1946 1095 1946 1942 1928 1942 1348 1760 
CHS-EA 72.8 (5.6) 56.3 6.4 (2.0) NA NA NA NA NA 
n 4197 2361 4197 NA NA NA NA NA 
CHS-AA 72.8 (5.6) 62.2 5.9 (1.9) NA NA NA NA NA 
n 776 483 776 NA NA NA NA NA 
EGCUT 47.08 (16.72) 46.9 6.36 (1.7842) 3.70 (1.4080) 0.51 (0.1773) 1.96 (0.6362) 0.0299 (0.0194) 0.154 (0.1217) 
n 974 457 974 973 973 973 974 973 
FHS 42.6 (13.9) 53.1 6.1 (1.6) 3.6 (1.2) 0.5 (0.1) 1.7 (0.5) 0.0 (0.0) 0.2 (0.1) 
n 5790 3077 5610 2315 2315 2315 2315 2315 
FINCAVAS 53.3 (13.9) 41.9 7.3 (2.5) 4.1 (2.2) 0.5 (0.2) 2.2 (1.1) 0.04 (0.03) 0.23 (0.2) 
n 913 383 912 396 396 396 396 436 
GeneSTAR-EA 42.47 (12.67) 52.20 6.64 (2.00) 4.21 (1.55) 0.38 (0.18) 2.09 (0.63) NA NA 
n 1023 534 1023 894 894 937 NA NA 
GeneSTAR-AA 42.40 (12.34) 61.99 6.01 (1.87) 3.47 (1.47) 0.3 (0.16)  2.23 (0.7) NA NA 
n 613 380 613 543 543 562 NA NA 
HABC-EA 75.72 (2.83) 52.5 6.593 (3.69) 3.837 (1.44) 0.564 (0.20) 1.93 (3.20) 0.0636 (0.04) 0.19 (0.17) 
n 1251 657 1251 1251 1251 1251 1251 1251 
HANDLS 48.13 (8.90) 54.7 6.23 (2.06) 3.55 (1.66) 0.40 (0.16) 2.08 (0.72) 0.03 (0.02) 0.16 (0.13) 
n 870 476 834 834 834 834 813 832 
JHS 53.0 (13.0) 37.5 5.59 (1.87) 3.09 (1.48) 0.39 (0.14) 1.93 (0.66) 0.03 (0.02) 0.14 (0.13) 
n 2258 846 2044 2032 2030 2032 1903 2000 
LBC1936 69.6 (0.8) 49.6 7.0 (1.9) 4.4 (1.5) 0.5 (0.2) 1.8 (0.8) NA NA 
n 964 478 963 963 963 963 NA NA 
LBC1921 79.1 (0.6) 58.3 7.1 (1.9) 4.6 (1.4) 0.5 (0.2) 1.7 (1.1) NA NA 
n 475 277 475 473 473 473 NA NA 
MESA-EA 69.49 (9.55) 50.1 6.139 (1.706) 3.79 (1.299) 0.483 (0.1842) 1.666 (0.5854) 0.028 (0.0445) 0.171 (0.1275) 
n 1267 635 1266 1193 1194 1193 1179 1186 
MESA-AA 69.54 (9.10) 53.9 5.779 (1.93) 3.205 (1.4436) 0.428 (0.166) 1.883 (0.6357) 0.018 (0.0341) 0.162 (0.1284) 
n 750 404 750 669 670 670 653 667 
MESA-HA 68.93 (9.43) 52 6.185 (1.6204) 3.68647 (1.3285) 0.433 (0.1618) 1.789 (0.5582) 0.020 (0.0385) 0.1721(0.1322) 
n 845 439 843 623 622 622 609 613 
MESA-EAS 65.12 (10.01) 47.1 5.314 (1.3629) 3.0834 (1.0671) 0.290 (0.108) 1.640 (0.5039) 0.030 (0.0311) 0.122 (0.1224) 
n 119 56 119 94 94 94 82 86 
MHIBB 63.9 (10.9) 36.6 7.3 (2.5) 4.6 (2.2) 0.6 (0.2) 1.8 (1.0) 0.0 (0.1) 0.2 (0.1) 
n 7911 2899 7911 7911 7911 7911 7911 7911 
REGARDS 63.5 (9.2) 68.0 5.6 (2.0) NA NA NA NA NA 
n 5039 3427 5030 NA NA NA NA NA 
RS 69.8 (0.7) 53.6 7(2) NA NA 3 (1) NA NA 



n 3016 1618 2794 NA NA 2758 NA NA 
SHIP 49.19 (16.09) 51 6.74 (2.02) NA NA NA NA NA 
n 3164 1613 3159 NA NA NA NA NA 
SHIP-Trend 52.00 (15.40) 51.3 6.15 (1.94) 3.64 (1.41) 0.53 (0.18) 1.75 (0.59) 0.03 (0.02) 0.16 (0.12) 
n 4245 2179 4238 4222 4222 4222 4221 4223 
SOLID-TIMI 52-AA 60.50 (10.13) 33.8 6.909 (2.137) 4.3402 (1.773) NA NA NA NA 
n 201 68 200 200 NA NA NA NA 
SOLID-TIMI 52-EA 64.55 (9.25) 25.8 7.5738 (2.22) 5.0038 (1.81) NA NA NA NA 
n 8111 2092 8035 8036 NA NA NA NA 
SOLID-TIMI 52-EAS 63.59 (10.4) 19.6 6.8109 (2.005) 4.2585 (1.65) NA NA NA NA 
n 255 50 255 252 NA NA NA NA 
SOLID-TIMI 52-SA 58.28 (9.67) 15.4 8.1573 (2.396) 5.6544 (2.074) NA NA NA NA 
n 117 18 116 116 NA NA NA NA 
SOLID-TIMI 52-HA 63.29 (9.74) 28.3 7.4106 (2.171) 4.8 (1.792) NA NA NA NA 
n 893 253 875 875 NA NA NA NA 
STABILITY-AA 62.86 (10.22) 25.4 5.6873 (1.67) 3.3362 (1.379) NA NA NA NA 
n 118 30 118 118 NA NA NA NA 
STABILITY-EA 65.91 (8.98) 17.6 6.8245 (1.839) 4.3007 (1.427) NA NA NA NA 
n 8499 1499 8490 8487 NA NA NA NA 
STABILITY-EAS 64.25 (8.72) 22.3 6.7628 (1.87) 4.1576 (1.466) NA NA NA NA 
n 714 159 714 714 NA NA NA NA 
STABILITY-SA 58.35 (10.84) 13 7.5481 (1.977) 4.8583 (1.697) NA NA NA NA 
n 354 46 348 347 NA NA NA NA 
STABILITY-HL 66.34 (8.41) 17.2 6.6986 (1.768) 4.2348 (1.444) NA NA NA NA 
n 500 86 500 500 NA NA NA NA 
WHI-EA 66.2 (6.7) 100 6.1 (1.7) 3.9 (1.4) 0.6 (0.2) 1.8 (1.0) 0.0 (0.0) 0.2 (0.1) 
n 21867 21867 21841 3669 3669 3669 3669 3669 
WHI-AA 65.0 (6.6) 100 5.6 (1.7) 3.2 (1.5) 0.5 (0.2) 1.9 (1.0) 0.0 (0.0) 0.2 (0.2) 
n 3501 3501 3497 712 712 712 713 712 
Total 134,770   133,273 78,123 58,450 61,248 56,263 42,615 
Abbreviations: EA, European Ancestry; AA, African Ancestry; HA, Hispanic American; EAS, East Asian; SA, South Asian. 

 

 

 



Table S5. Blood cell specific expression quantitative trait loci (eQTL) datasets used for lookups of white blood cell trait variants identified in the present study 

Datasets Reference [PMID] 

Blood cell related eQTL studies included fresh lymphocytes  17873875 

Fresh leukocytes  19966804 

Leukocyte samples in individuals with Celiac disease  19128478 

Whole blood samples  18344981, 21829388, 22692066, 23818875, 23359819, 23880221, 24013639, 23157493, 23715323, 24092820, 24314549, 
24956270, 24592274, 24728292, 24740359, 25609184, 22563384, 25474530, 25816334, 25578447 

Lymphoblastoid cell lines derived from asthmatic children  17873877, 23345460 

Lymphoblastoid cell lines derived from 3 HapMap populations  17873874 

Lymphoblastoid cell lines derived from HapMap CEU populations 18193047 

Lymphoblastoid cell lines from population samples  19644074, 22286170, 22941192, 23755361, 23995691, 25010687, 25951796 

Neutrophils  26151758, 26259071 

CD19+ B cells  22446964 

Primary phytohaemagglutinin (PHA)-stimulated T cells  19644074, 23755361 

CD4+ T cells  20833654 

Peripheral blood monocytes  19222302,20502693,22446964, 23300628, 25951796, 26019233 
CD14+ monocytes before and after stimulation with lipopolysaccharide (LPS) or interferon-
gamma  24604202 

CD11+ dendritic cells before and after Mycobacterium tuberculosis infection  22233810 
Dendritic cells before or after stimulation with lipopolysaccharide (LPS), influenza or 
interferon-beta  24604203 

Micro-RNA QTLs  21691150, 26020509 

DNase-I QTLs  22307276 

Histone acetylation QTLs  25799442 

Ribosomal occupancy QTLs  25657249 

Splicing QTLs  25685889 

Micro-RNA QTLs  25791433 

Splicing QTLs  25685889 

ScanDB eQTL dataa http://www.scandb.org/newinterface/about.html 

Genotype-Tissue Expression (GTEx) whole blood eQTLb 23715323, www.gtexportal.org 

eQTL databases at University of Chicago http://eqtl.uchicago.edu/Home.html 

Long non-coding RNAs in monocytes  25025429 
aScanDB cis-eQTLs were limited to those with P<1.0E-6 and trans-eQTLs with P<5.0E-8.  
bGTEx Analysis V4 for 13 tissues were downloaded from the GTEx Portal (www.gtexportal.org) and results were filtered using the following criteria: Splicing QTL (sQTL) results generated with sQTLseeker with false 
discovery rate P≤0.05 were retained. For all gene-level eQTLs, if at least 1 SNP passed the tissue-specific empirical threshold in GTEx, the best SNP for that eQTL was always retained. All gene-level eQTL SNPs with 
P<1.67E-11 were also retained, reflecting a global threshold correction of P=0.05/(30,000 genes X 1,000,000 tests). 

http://www.scandb.org/newinterface/about.html


 

See Table S6 in the accombanying Excel file. 

 

 



Table S7. Independent single nucleotide variants (N=28) associated with white blood cell traits in European only and combined All ancestries meta-analysis 
           Discovery Replication 

Trait 
(population) dbSNPID Chr Pos Alt Ref EAF Gene Annotation AA 

Substitution 
CADD 
Score N Beta SE P N EAF Beta SE P 

WBC (EA) rs4925663 1 247,614,617 T C 0.39 OR2B11 Missense p.Gly223Asp 24.10 107,345 0.0251 0.0046 4.55E-08 17,897 0.4 0.01693 0.0112 0.132 

WBC (All) rs4925663 1 247,614,617 T C 0.37 OR2B11 Missense p.Gly223Asp 24.10 131,513 0.026 0.0042 5.85E-10 17,897 0.4 0.01693 0.0112 0.132 

WBC (All) rs1260326 2 27,730,940 C T 0.62 GCKR Missense p.Leu446Pro 0.11 132,764 -
0.0299 0.0044 1.44E-11 17,897 0.6 -0.0437 0.012 0.00027 

WBC (EA) rs1260326 2 27,730,940 C T 0.58 GCKR Missense p.Leu446Pro 0.11 108,596 -
0.0298 0.0048 4.01E-10 17,897 0.6 -0.0437 0.012 0.00027 

WBC (All) rs2276853 3 47,282,303 A G 0.58 KIF9 Missense p.Arg573Trp 32.00 132,764 0.023 0.0042 3.65E-08 17,897 0.6 0.02516 0.0116 0.03 

WBC (All) rs9374080 6 109,616,420 C T 0.43 CCDC162P Intronic  3.79 132,764 0.0227 0.0041 4.01E-08 17,897 0.46 0.02512 0.0113 0.0255 

LYM (All) rs2229094 6 31,540,556 C T 0.26 LTA Missense p.Cys13Arg 0.03 59,978 0.0451 0.0071 1.55E-10 16,711 0.25 0.07796 0.0175 8.54E-06 

LYM (EA) rs2229094 6 31,540,556 C T 0.26 LTA Missense p.Cys13Arg 0.03 47,105 0.0456 0.0081 1.89E-08 16,711 0.25 0.07796 0.0175 8.54E-06 

NEU (All) rs185819a 6 32,050,067 C T 0.52 TNXB Missense p.His1161Ar
g 0.00 76,838 0.0308 0.0058 9.65E-08 16,669 0.47 0.02635 0.0158 0.0948 

WBC (All) rs185819 6 32,050,067 C T 0.51 TNXB Missense p.His1161Ar
g 0.00 132,764 0.0307 0.0049 4.02E-10 17,897 0.47 0.03395 0.0149 0.0224 

WBC (All) rs1050331 7 44,808,091 G T 0.48 ZMIZ2 3'UTR  5.30 123,297 0.0235 0.0041 1.25E-08 15,910 0.48 0.01149 0.0117 0.325 

MON (All) rs4917014 7 50,305,863 G T 0.28 C7orf72-IKZF1 Intergenic  1.91 57,183 -0.038 0.0068 1.97E-08 16,669 0.32 -0.0478 0.0122 8.92E-05 

MON (EA) rs10107630 8 130,603,635 T C 0.57 CCDC26 Intronic  5.39 44,325 -
0.0683 0.0069 2.45E-23 15,781 0.57 -0.1069 0.0118 1.06E-19 

MON (All) rs10107630 8 130,603,635 T C 0.56 CCDC26 Intronic  5.39 57,183 -
0.0663 0.006 3.11E-28 15,781 0.57 -0.1069 0.0118 1.06E-19 

WBC (All) rs1982151 9 86,617,265 G A 0.71 RMI1 Missense p.Asn455Ser 0.00 132,764 0.0255 0.0044 6.97E-09 17,897 0.74 0.02095 0.0123 0.0896 

WBC (EA) rs4409764 10 101,284,237 G T 0.51 GOT1-
LINC01475 Intergenic  7.60 108,596 -

0.0255 0.0046 3.34E-08 17,897 0.53 -4.00E-
04 0.0115 0.974 

MON (All) rs6584283 10 101,291,593 C T 0.55 LINC01475 Intronic ncRNA - 57,183 -0.035 0.0061 9.55E-09 16,669 0.53 -0.0121 0.0121 0.319 

WBC (EA) rs1935 10 64,927,823 G C 0.49 JMJD1C Missense p.Glu2353As
p 16.64 108,596 -

0.0261 0.0047 2.46E-08 17,897 0.46 -0.0271 0.0117 0.0206 

NEU (All) rs3747869 10 73,520,632 C A 0.9 C10orf54 
(DD1α) Missense p.Asp187Glu 10.88 76,838 0.0494 0.0087 1.58E-08 16,669 0.9 0.07326 0.019 0.00012 

WBC (EA) rs3747869 10 73,520,632 C A 0.9 C10orf54 
(DD1α) Missense p.Asp187Glu 10.88 108,596 0.0398 0.0073 4.26E-08 17,897 0.9 0.08289 0.0184 6.40E-06 

NEU (EA) rs3747869 10 73,520,632 C A 0.9 C10orf54 
(DD1α) Missense p.Asp187Glu 10.88 60,851 0.0533 0.0095 2.11E-08 16,669 0.9 0.07326 0.019 0.00012 

WBC (All) rs3747869 10 73,520,632 C A 0.91 C10orf54 
(DD1α) Missense p.Asp187Glu 10.88 132,764 0.0381 0.0068 2.31E-08 17,897 0.9 0.08289 0.0184 6.40E-06 

NEU (EA) rs144349650 11 55,432,976 G C 0.0006
9 OR4C6 Missense p.Leu112Val 13.09 60,851 0.7176 0.1096 5.95E-11 16,669 Monomorph

ic NA NA NA 

NEU (All) rs144349650 11 55,432,976 G C 0.0007
1 OR4C6 Missense p.Leu112Val 13.09 76,838 0.6648 0.0962 4.92E-12 16,669 Monomorph

ic NA NA NA 

WBC (EA) rs144349650 11 55,432,976 G C 0.0004
2 OR4C6 Missense p.Leu112Val 13.09 108,596 0.7207 0.1073 1.87E-11 17,897 2.81E-05 -0.6178 0.9965 0.535 

WBC (All) rs144349650 11 55,432,976 G C 0.0004
4 OR4C6 Missense p.Leu112Val 13.09 132,764 0.6379 0.0942 1.26E-11 17,897 2.81E-05 -0.6178 0.9965 0.535 

LYM (EA) rs199694284 11 5,632,403 C T 5.3E-
05 TRIM6 Missense p.Val258Ala 25.20 40,313 -

2.3971 0.4458 7.56E-08 16,711 5.98E-05 -0.9067 0.6995 0.195 

BAS (EA) rs4430553 12 66,698,895 C T 0.54 HELB Missense p.Leu191Pro 5.73 44,138 0.0404 0.0068 3.02E-09 15,770 0.53 0.02111 0.0116 0.0681 

BAS (All) rs4430553 12 66,698,895 C T 0.56 HELB Missense p.Leu191Pro 5.73 56,707 0.0391 0.006 9.73E-11 15,770 0.53 0.02111 0.0116 0.0681 

LYM (All) rs4763879 12 9,910,164 A G 0.32 CD69 Intronic  3.03 59,978 -
0.0366 0.0064 1.08E-08 16,711 0.36 -0.0381 0.0119 0.00136 

LYM (EA) rs4763879 12 9,910,164 A G 0.36 CD69 Intronic  3.03 47,105 -
0.0379 0.0069 3.08E-08 16,711 0.36 -0.0381 0.0119 0.00136 

MON (EA) rs11625112 14 23,596,740 G A 0.46 SLC7A8 Intronic  6.34 44,325 -
0.0376 0.0068 3.82E-08 16,669 0.45 -0.031 0.0115 0.00704 

WBC (EA) rs2306331 15 51,217,361 C T 0.46 AP4E1 Missense p.Cys88Arg 6.49 100,571 -
0.0249 0.0046 6.15E-08 15,910 0.47 -0.0174 0.0116 0.134 

MON (EA) rs11642873a 16 85,991,705 C A 0.2 IRF8-
LINC01082 Intergenic  0.75 44,325 0.0573 0.0085 1.41E-11 16,669 0.2 0.11251 0.0144 6.17E-15 



MON (All) rs11642873 16 85,991,705 C A 0.17 IRF8-
LINC01082 Intergenic  0.75 57,183 0.0561 0.0081 3.24E-12 16,669 0.2 0.11251 0.0144 6.17E-15 

MON (All) rs1292053 17 57,963,537 G A 0.45 TUBD1 Missense p.Met76Thr 5.53 57,183 -
0.0359 0.006 2.55E-09 16,669 0.44 -0.0398 0.0116 0.00061 

WBC (All) rs1292053 17 57,963,537 G A 0.45 TUBD1 Missense p.Met76Thr 5.53 132,764 -
0.0287 0.004 1.06E-12 17,897 0.44 -0.027 0.0111 0.0151 

WBC (EA) rs1292053 17 57,963,537 G A 0.45 TUBD1 Missense p.Met76Thr 5.53 108,596 -
0.0304 0.0045 1.28E-11 17,897 0.44 -0.027 0.0111 0.0151 

BAS (All) rs736289 19 33,757,062 C T 0.43 SLC7A10-
CEBPA Intergenic  0.41 56,707 0.0343 0.0061 2.34E-08 15,770 0.4 0.01229 0.0116 0.291 

BAS (EA) rs736289 19 33,757,062 C T 0.39 SLC7A10-
CEBPA Intergenic  0.41 44,138 0.0402 0.0069 7.02E-09 15,770 0.4 0.01229 0.0116 0.291 

NEU (All) rs4760 19 44,153,100 G A 0.14 CD87 (PLAUR) Missense p.Lue272Pro 24.20 71,415 -
0.0471 0.0079 2.33E-09 16,669 0.15 -0.044 0.0159 0.00555 

WBC (EA) rs4760 19 44,153,100 G A 0.16 CD87 (PLAUR) Missense p.Lue272Pro 24.20 85,685 -0.043 0.0068 2.51E-10 17,897 0.15 -0.0518 0.0153 0.00071 

WBC (All) rs4760 19 44,153,100 G A 0.14 CD87 (PLAUR) Missense p.Lue272Pro 24.20 106,384 -
0.0424 0.0065 8.63E-11 17,897 0.15 -0.0518 0.0153 0.00071 

NEU (EA) rs4760 19 44,153,100 G A 0.16 CD87 (PLAUR) Missense p.Lue272Pro 24.20 56,112 -
0.0467 0.0083 1.54E-08 16,669 0.15 -0.044 0.0159 0.00555 

WBC (All) rs3865444 19 51,727,962 A C 0.28 CD33 Upstream  3.79 107,635 -0.034 0.005 6.25E-12 17,897 0.32 -0.0329 0.0118 0.00514 

WBC (EA) rs3865444 19 51,727,962 A C 0.31 CD33 Upstream  3.79 86,936 -
0.0367 0.0053 3.51E-12 17,897 0.32 -0.0329 0.0118 0.00514 

LYM (All) rs6136489 20 1,923,734 G T 0.4 SIRPA-PDYN Intergenic  2.52 59,978 -
0.0406 0.0061 3.99E-11 16,711 0.33 -0.0096 0.0121 0.428 

WBC (All) rs6136489 20 1,923,734 G T 0.39 SIRPA-PDYN Intergenic  2.52 132,764 -
0.0246 0.0042 4.03E-09 17,897 0.33 -0.0179 0.0116 0.122 

LYM (EA) rs6136489 20 1,923,734 G T 0.34 SIRPA-PDYN Intergenic  2.52 47,105 -
0.0384 0.007 3.33E-08 16,711 0.33 -0.0096 0.0121 0.428 

BAS (EA) rs2295764 20 31,025,163 G A 0.36 ASXL1 3'UTR  0.10 44,138 -
0.0419 0.0071 3.28E-09 15,770 0.36 -0.031 0.012 0.00978 

BAS (All) rs2295764 20 31,025,163 G A 0.33 ASXL1 3'UTR  0.10 56,707 -
0.0367 

0.0064
1 1.07E-08 15,770 0.36 -0.031 0.012 0.00978 

WBC (All) rs2836878 21 40,465,534 A G 0.26 ETS2-PSMG1 Intergenic  1.82 132,764 -
0.0246 0.0046 8.36E-08 17,897 0.26 -0.0264 0.0125 0.0344 

Abbreviations: Chr, chromosome; Pos, basepair position; Alt, effect allele; Ref, reference allele; EAF, effect allele frequency; AA, amino acid; CADD, Combined annotation dependent depletion; EA, European ancestry, All, combined European, African, Hispanic American, East Asian and South 
Asian ancestries; WBC, white blood cell; NEU, neutrophil; MON, monocyte; LYM, lymphocyte; BAS, basophil. 
aSecondary signal identified through conditional analysis.  

 

 

 



Table S8. Association between 16 replicated loci and white blood cell subtypes in the discovery meta-analysis. Primary associations are shown in 
bold. 
dbSNPID Chr Pos Gene Alt/Ref Trait 

(population) N EAF Beta SE P 

rs1260326 2 27,730,940 GCKR C/T WBC (EA) 108,596 0.58 -0.030 0.005 4.01E-10 

     WBC (All) 132,764 0.62 -0.030 0.004 1.44E-11 

     WBC (AA) 17,200 0.85 -0.039 0.016 1.44E-02 

     NEU (EA) 60,851 0.58 -0.020 0.006 9.81E-04 

     NEU (All) 76,838 0.62 -0.019 0.006 6.46E-04 

     LYM (EA) 47,105 0.59 -0.016 0.007 2.15E-02 

     LYM (All) 59,978 0.64 -0.013 0.006 3.91E-02 

     BAS (EA) 44,138 0.59 -0.022 0.007 2.17E-03 

          BAS (All) 56,707 0.64 -0.021 0.006 1.04E-03 

rs2276853 3 47,282,303 KIF9 A/G WBC (All) 132,764 0.58 0.023 0.004 3.65E-08 

     WBC (EA) 108,596 0.60 0.022 0.005 1.39E-06 

     NEU (EA) 60,851 0.60 0.017 0.006 4.56E-03 

     NEU (All) 76,838 0.59 0.018 0.005 8.24E-04 

     LYM (EA) 47,105 0.60 0.015 0.007 2.70E-02 

     LYM (All) 59,978 0.58 0.018 0.006 2.52E-03 

          LYM (AA) 9,423 0.53 0.039 0.015 7.86E-03 

rs2229094 6 31,540,556 LTA C/T LYM (EA) 47,105 0.26 0.046 0.008 1.89E-08 

     LYM (All) 59,978 0.26 0.045 0.007 1.55E-10 

     LYM (AA) 9,423 0.28 0.044 0.017 7.30E-03 

     WBC (EA) 108,596 0.26 0.035 0.006 2.73E-09 

     WBC (All) 132,764 0.26 0.031 0.005 5.40E-09 

     NEU (All) 76,838 0.26 0.015 0.006 1.74E-02 

     BAS (EA) 44,138 0.26 0.026 0.008 1.37E-03 

          BAS (All) 56,707 0.27 0.020 0.007 5.59E-03 

rs185819 6 32,050,067 TNXB C/T WBC (All) 132,764 0.51 0.031 0.005 4.02E-10 

     WBC (EA) 108,596 0.52 0.029 0.006 2.62E-07 

     WBC (AA) 17,200 0.47 0.035 0.012 4.38E-03 

     NEU (EA) 60,851 0.52 0.025 0.007 1.33E-04 

     NEU (All) 76,838 0.52 0.031 0.006 9.65E-08 

     NEU (AA) 9,734 0.47 0.058 0.016 1.80E-04 

     MON (EA) 44,325 0.51 0.020 0.008 1.14E-02 

     MON (All) 57,183 0.51 0.021 0.007 1.89E-03 

     LYM (EA) 47,105 0.51 0.015 0.007 3.93E-02 

     LYM (All) 59,978 0.50 0.019 0.006 3.23E-03 

     LYM (AA) 9,423 0.47 0.041 0.015 5.79E-03 

     EOS (EA) 32,517 0.48 0.019 0.009 4.39E-02 

     EOS (All) 44,249 0.48 0.016 0.008 3.58E-02 

     BAS (EA) 44,138 0.51 0.020 0.007 6.87E-03 

          BAS (All) 56,707 0.51 0.020 0.006 1.90E-03 

rs9374080 6 109,616,420 CCDC162P C/T WBC (All) 132,764 0.43 0.023 0.004 4.01E-08 

     WBC (EA) 108,596 0.44 0.021 0.005 2.67E-06 

     WBC (AA) 17,200 0.36 0.024 0.011 3.74E-02 

     NEU (EA) 60,851 0.44 0.015 0.006 1.08E-02 

     NEU (All) 76,838 0.42 0.018 0.005 5.69E-04 

     MON (All) 57,183 0.43 0.014 0.006 2.71E-02 

     BAS (EA) 44,138 0.45 0.026 0.007 1.34E-04 

     BAS (All) 56,707 0.43 0.024 0.006 9.85E-05 



rs4917014 7 50,305,863 C7orf72-IKZF1 G/T MON (All) 57,183 0.28458 -0.038 0.00677 1.97E-08 

     MON (EA) 44,325 0.32243 -0.0336 0.00726 3.84E-06 

          MON (AA) 9,406 0.08266 -0.0606 0.02683 2.40E-02 

rs3747869 10 73,520,632 C10orf54 (DD1α) C/A WBC (EA) 108,596 0.90 0.040 0.007 4.26E-08 

     WBC (All) 132,764 0.91 0.038 0.007 2.31E-08 

     NEU (EA) 60,851 0.90 0.053 0.010 2.11E-08 

     NEU (All) 76,838 0.90 0.049 0.009 1.58E-08 

     MON (EA) 44,325 0.90 0.041 0.011 2.44E-04 

     MON (All) 57,183 0.91 0.037 0.010 3.77E-04 

     EOS (EA) 32,517 0.82 0.033 0.014 1.58E-02 

     EOS (All) 44,249 0.85 0.025 0.012 4.23E-02 

rs1935 10 64,927,823 JMJD1C G/C WBC (EA) 108,596 0.49 -0.026 0.005 2.46E-08 

     WBC (All) 132,764 0.46 -0.025 0.004 6.57E-09 

     NEU (EA) 60,851 0.49 -0.024 0.006 4.00E-05 

     NEU (All) 76,838 0.46 -0.022 0.005 4.99E-05 

     LYM (All) 59,978 0.45 -0.013 0.006 2.86E-02 

          EOS (All) 44,249 0.41 -0.020 0.007 6.33E-03 

rs4763879 12 9,910,164 CD69 A/G LYM (EA) 47,105 0.36 -0.038 0.007 3.08E-08 

     LYM (All) 59,978 0.32 -0.037 0.006 1.08E-08 

     WBC (EA) 108,596 0.36 -0.014 0.005 2.63E-03 

     WBC (All) 132,764 0.33 -0.013 0.004 2.94E-03 

rs11625112 14 23,596,740 SLC7A8 G/A MON (EA) 44,325 0.46 -0.038 0.007 3.82E-08 

     MON (All) 57,183 0.46 -0.030 0.006 4.20E-07 

     EOS (EA) 32,517 0.42 -0.021 0.008 1.17E-02 

     EOS (All) 44,249 0.43 -0.021 0.007 2.77E-03 

     BAS (EA) 44,138 0.46 -0.031 0.007 7.76E-06 

          BAS (All) 56,707 0.46 -0.026 0.006 1.07E-05 

rs11642873 16 85,991,705 IRF8-LINC01082 C/A MON (EA) 44,325 0.20 0.057 0.008 1.41E-11 

     MON (All) 57,183 0.17 0.056 0.008 3.24E-12 

     EOS (EA) 32,517 0.18 0.036 0.010 5.94E-04 

     EOS (All) 44,249 0.15 0.033 0.010 8.18E-04 

     BAS (EA) 44,138 0.20 0.021 0.009 1.53E-02 

          BAS (All) 56,707 0.17 0.016 0.008 4.73E-02 

rs1292053 17 57,963,537 TUBD1 G/A WBC (EA) 108,596 0.45 -0.030 0.004 1.28E-11 

     WBC (All) 132,764 0.45 -0.029 0.004 1.06E-12 

     WBC (AA) 17,200 0.48 -0.029 0.011 8.31E-03 

     NEU (EA) 60,851 0.45 -0.023 0.006 1.04E-04 

     NEU (All) 76,838 0.45 -0.020 0.005 1.28E-04 

     MON (EA) 44,325 0.45 -0.032 0.007 2.25E-06 

     MON (All) 57,183 0.45 -0.036 0.006 2.55E-09 

     MON (AA) 9,406 0.48 -0.035 0.015 1.80E-02 

     LYM (EA) 47,105 0.44 -0.016 0.007 1.46E-02 

     LYM (All) 59,978 0.45 -0.013 0.006 3.05E-02 

rs4760 19 44,153,100 CD87 (PLAUR) G/A NEU (EA) 56,112 0.16 -0.047 0.008 1.54E-08 

     NEU (All) 71,415 0.14 -0.047 0.008 2.33E-09 

     WBC (EA) 85,685 0.16 -0.043 0.007 2.51E-10 

          WBC (All) 106,384 0.14 -0.042 0.007 8.63E-11 

rs3865444 19 51,727,962 CD33 A/C WBC (EA) 86,936 0.31 -0.037 0.005 3.51E-12 

     WBC (All) 107,635 0.28 -0.034 0.005 6.25E-12 



     NEU (EA) 57,363 0.31 -0.025 0.006 1.15E-04 

     NEU (All) 72,666 0.28 -0.021 0.006 3.26E-04 

     MON (EA) 40,837 0.31 -0.020 0.008 9.46E-03 

     MON (All) 53,011 0.28 -0.016 0.007 2.51E-02 

     EOS (EA) 29,046 0.28 -0.029 0.010 2.16E-03 

          EOS (All) 40,099 0.25 -0.025 0.009 3.09E-03 

rs2295764 20 31,025,163 ASXL1 G/A BAS (EA) 44,138 0.36 -0.042 0.007 3.28E-09 

     BAS (All) 56,707 0.33 -0.037 0.006 1.07E-08 

     WBC (AA) 17,200 0.20 -0.029 0.013 3.23E-02 

     MON (EA) 44,325 0.36 -0.032 0.007 5.64E-06 

     MON (All) 57,183 0.33 -0.026 0.006 3.95E-05 

     EOS (EA) 32,517 0.32 -0.027 0.009 2.14E-03 

          EOS (All) 44,249 0.30 -0.025 0.008 9.81E-04 

rs2836878 21 40,465,534 ETS2-PSMG1 A/G WBC (All) 132,764 0.26 -0.025 0.005 8.36E-08 

     WBC (EA) 108,596 0.27 -0.024 0.005 7.49E-07 

     NEU (EA) 60,851 0.28 -0.025 0.006 1.08E-04 

     NEU (All) 76,838 0.26 -0.025 0.006 3.38E-05 

     MON (EA) 44,325 0.28 -0.026 0.008 7.28E-04 

     MON (All) 57,183 0.25 -0.022 0.007 1.69E-03 

     BAS (EA) 44,138 0.28 -0.019 0.008 1.29E-02 

          BAS (All) 56,707 0.25 -0.018 0.007 9.80E-03 
Abbreviations: Chr, chromosome; Pos, basepair position; Alt, effect allele; Ref, reference allele; EAF, effect allele frequency; EA, European ancestry; AA, African 
ancestry; All, combined European, African, Hispanic American, East Asian and South Asian ancestries; WBC, white blood cell; NEU, neutrophil; MON, monocyte; 
LYM, lymphocyte; EOS, eosinophils; BAS, basophils. 

 

 

 



 

See Table S9 in the accompanying Excel file 

 



Table S10. Genes associated with white blood cell and differential counts identified using gene-based association meta-analysis 

          Number 
of 
variants 

Discovery   Replication 

Trait Population Gene Test Chr N P Beta S.D. MAF cutoff cMAC   Test N P Beta S.D. 

WBC EA CXCR2 SKAT 2 9 108,596 1.241E-14 -0.223 0.029 1 3,725  SKAT 2,898 0.0173 -0.406 0.169 

WBC All CXCR2 SKAT 2 8 138,814 9.48E-15 -0.193 0.027 1 10,438       
WBC EA CXCR2 VT 2 9 108,596 7.239E-14 -0.223 0.029 0.012 3,725  VT 2,898 0.053 -0.406 0.169 

WBC All CXCR2 VT 2 5 138,814 3.56E-13 -0.21 0.028 0.0023 10,438       
WBC All JAK2 VT 9 6 138,814 2.682E-06 0.334 0.066 0.00036 8,045  VT 2,898 0.0091 -0.505 0.163 

WBC EA TAF3 VT 10 6 108,596 1.583E-06 0.328 0.064 0.00037 6,848  VT 2,898 NA NA NA 

NEU EA CXCR2 SKAT 2 8 60,851 6.853E-09 -0.221 0.038 1 2,950  SKAT 1,285 0.190 -0.017 0.236 

NEU All CXCR2 SKAT 2 7 77,223 5.062E-09 -0.203 0.035 1 9,252       
NEU EA CXCR2 VT 2 8 60,851 2.495E-08 -0.221 0.038 0.0185 2,950  VT 1,285 0.580 -0.392 0.335 

NEU All CXCR2 VT 2 4 77,223 2.128E-08 -0.218 0.037 0.0023 9,252       
NEU All JAK2 VT 9 6 77,223 1.553E-07 0.431 0.077 0.00054 6,388  VT 1,285 NA NA NA 

NEU EA OR4C6 SKAT 11 15 60,851 2.561E-08 0.109 0.044 1 512  SKAT 1,285 0.4844 -0.1455 0.198 

NEU EA IL17RA SKAT 22 18 44,325 1.004E-16 -0.128 0.026 1 10,016  SKAT 1,285 0.949 -0.018 0.176 

NEU AA ZNF439 VT 19 4 10,119 9.566E-07 -1.099 0.221 0.083 1,688  VT 1,285 NA NA NA 

MON All IL17RA SKAT 22 19 57,567 1.174E-18 -0.104 0.023 1 23,595  SKAT 1,285 0.972 -0.004 0.176 

LYM All TBX3 VT 12 4 60,363 1.959E-06 0.419 0.083 0.00060 144   VT 1,285 NA NA NA 

Potentially novel genes are shown in bold.  
Abbreviations: Chr, Chromosome; MAF, minor allele frequency; cMAC, cumulative minor allele count; WBC, white blood cell; NEU, neutrophil; MON, monocytes; LYM, lymphocytes; SKAT, sequence kernel association 
test; VT, variable-threshold test; ; EA, European ancestry; AA, African ancestry; All, combined European, African, Hispanic American, East Asian and South Asian ancestries. 

 

 



Table S11. Association between white blood cell trait associated variants and immunologically relevant quantitative traits in previous genome-wide association studies (P < 1.64E-
04). 

Trait 
(population) dbSNPID Chr  Pos Alt/Ref Gene Quantitative traits Sample size Pa PMID 

WBC (EA) rs1260326 2 27,730,940 C/T GCKR C-reactive protein 70,410 3.80E-43 23263486, 21300955, 23505291, 22939635, 18439548 

WBC (EA) rs1260326 2 27,730,940 C/T GCKR Plasma protein-C levels 9,424 2.00E-17 20802025 

WBC (EA) rs1260326 2 27,730,940 C/T GCKR Serum urate 50,337 5.90E-17 20884846, 23263486, 21768215, 19503597, 21943158 

WBC (EA) rs1260326 2 27,730,940 C/T GCKR Platelet count 37,438 9.10E-10 22139419 

WBC (EA) rs1260326 2 27,730,940 C/T GCKR 2-hour glucose tolerance test 133,010 9.00E-15 22885924, 20081857, 23263486 

WBC (EA) rs1260326 2 27,730,940 C/T GCKR Fasting blood glucose 133,010 2.20E-41 22885924, 20081857, 20081858, 23263486 

WBC (EA) rs1260326 2 27,730,940 C/T GCKR Fasting insulin 133,010 2.70E-22 22885924, 20081857, 20081858, 23263486 

WBC (EA) rs1260326 2 27,730,940 C/T GCKR Factor VII activity in plasma 31,212 6.20E-24 21676895, 20231535, 21676895 

WBC (EA) rs1260326 2 27,730,940 C/T GCKR Total cholesterol 140,059 4.40E-28 20686565, 23063622, 20339536, 20339536, 19060906 

WBC (EA) rs1260326 2 27,730,940 C/T GCKR Triglycerides 140,059 1.30E-139 

20686565, 22629316, 23063622, 19936222, 18193043, 
20657596, 19060911, 19802338, 20339536, 23505323, 
20139978, 19060910, 23236364, 21943158, 18454146, 
19913121, 21862451, 19060906, 22171074 

WBC (EA) rs1260326 2 27,730,940 C/T GCKR HDL 26,768 6.30E-36 19936222 

WBC (EA) rs1260326 2 27,730,940 C/T GCKR Height 183,727 9.40E-05 20881960 

WBC (EA) rs1260326 2 27,730,940 C/T GCKR HOMA-IR 122,744 9.20E-07 20081858, 20081857, 23263486 

WBC (All) rs185819 6 32,050,067 C/T TNXB Height 183,727 1.70E-06 20881960, 18391951 

WBC (All) rs9374080 6 109,616,420 C/T CCDC162P Mean corpuscular hemoglobin 
concentration 135,367 3.00E-21 23222517 

WBC (All) rs9374080 6 109,616,420 C/T CCDC162P Mean corpuscular volume 135,367 2.30E-18 23222517, 19862010, 20139978 

WBC (All) rs9374080 6 109,616,420 C/T CCDC162P Red blood cell count 135,367 1.60E-15 23222517 

MON (All) rs4917014 7 50,305,863 G/T C7orf72-IKZF1 HDL 140,059 2.40E-05 20686565 

WBC (EA) rs1935 10 64,927,823 G/C JMJD1C Platelet count 16,388 2.70E-08 22423221 

WBC (EA) rs1935 10 64,927,823 G/C JMJD1C Triglycerides 140,059 1.50E-07 20686565, 19060906 

MON (EA) rs11625112b 14 23,596,740 G/A SLC7A8 Triglycerides 140,059 4.90E-05 20686565, 19060906 

WBC (All) rs2836878 21 40,465,534 A/G ETS2-PSMG1 C-reactive protein 82,725 4.00E-08 21300955, 22939635 
aLookup of 16 single nucleotide variants was performed and results with multiple testing corrected p-value < 1.64E-04 (16 variants and 19 quantitative traits) are shown here. When multiple studies report the same variant-trait 
associations, results from the largest sample size are presented here. 
b LD r2 between rs11625112 and rs2239633 in SLC7A8 is 0.63. 
Abbreviations: Chr, chromosome; Pos, basepair position; Alt, effect allele; Ref, reference allele; HDL, high density lipoprotein; HOMA-IR, homeostatic model assessment-insulin resistance; WBC, white 
blood cell; NEU, neutrophil; MON, monocyte; LYM, lymphocyte; BAS, basophil. 

 

 



Table S12. White blood cell trait variants associated with platelet and red blood cell related traits in the European and combined All ancestries of the 
Blood-Cell Consortium. 

dbSNPID Chr Pos Gene Alt/Ref EAF Trait Beta SE P 
European ancestry         
rs1260326 2 27,730,940 GCKR C/T 0.58 WBC -0.03 0.005 4.01E-10 

      PLT -0.037 0.005 7.15E-14 

      RBC 0.022 0.006 5.73E-04 

      HCT 0.023 0.005 7.53E-06 

      HGB 0.022 0.005 3.74E-06 

          
rs2229094 6 31,540,556 LTA C/T 0.26 LYM 0.046 0.008 1.89E-08 

      PLT 0.019 0.006 2.04E-03 

          
rs1935 10 64,927,823 JMJD1C G/C 0.49 WBC -0.026 0.005 2.46E-08 

      PLT 0.05 0.005 3.11E-25 

      MPV -0.112 0.008 7.64E-41 

      RDW -0.017 0.007 1.75E-02 

      MCH 0.017 0.007 1.18E-02 

          
rs4763879 12 9,910,164 CD69 A/G 0.36 LYM -0.038 0.007 3.08E-08 

      HGB -0.01 0.005 3.44E-02 

      MCHC -0.012 0.006 3.38E-02 

          
rs11625112 14 23,596,740 SLC7A8 G/A 0.46 MON -0.038 0.007 3.82E-08 

      HCT 0.012 0.005 1.76E-02 

          
rs1292053 17 57,963,537 TUBD1 G/A 0.45 WBC -0.03 0.004 1.28E-11 

      PLT -0.017 0.005 1.94E-04 

      RDW 0.024 0.007 3.85E-04 

      HCT -0.015 0.005 2.05E-03 

      HGB -0.016 0.005 5.11E-04 

      MCV -0.012 0.006 4.34E-02 

      MCH -0.016 0.006 1.45E-02 

          
rs3865444 19 51,727,962 CD33 A/C 0.31 WBC -0.037 0.005 3.51E-12 

      PLT -0.026 0.005 1.11E-06 

      MCHC 0.016 0.006 8.70E-03 

          
rs2295764 20 31,025,163 ASXL1 G/A 0.36 BAS -0.042 0.007 3.28E-09 

      RDW 0.034 0.007 2.35E-06 

All combined ancestries         
rs2276853 3 47,282,303 KIF9 A/G 0.58 WBC 0.023 0.004 3.65E-08 

      HGB -0.011 0.004 1.14E-02 

          
rs9374080 6 109,616,420 CCDC162P C/T 0.43 WBC 0.023 0.004 4.01E-08 

      PLT 0.015 0.004 3.07E-04 

      MPV -0.024 0.007 9.28E-04 

      RBC -0.043 0.005 3.13E-15 

      RDW -0.041 0.006 6.19E-11 



      MCV 0.06 0.006 8.84E-28 

      MCH 0.062 0.006 3.10E-26 

      MCHC 0.023 0.005 5.13E-06 

          
rs185819 6 32,050,067 TNXB C/T 0.51 WBC 0.031 0.005 4.02E-10 

      PLT 0.017 0.005 6.16E-04 

      MPV -0.023 0.009 8.78E-03 

      MCH -0.015 0.007 2.94E-02 

          
rs1292053 17 57,963,537 TUBD1 G/A 0.45 MON -0.036 0.006 2.55E-09 

      PLT -0.013 0.004 1.40E-03 

      RBC -0.012 0.005 2.51E-02 

      RDW 0.023 0.006 2.30E-04 

      HCT -0.013 0.004 2.97E-03 

      HGB -0.013 0.004 1.02E-03 

          
rs2836878 21 40,465,534 ETS2-PSMG1 A/G 0.26 WBC -0.025 0.005 8.36E-08 

      PLT -0.014 0.005 3.44E-03 

      RDW -0.025 0.007 3.28E-04 

      HCT 0.016 0.005 1.37E-03 

      HGB 0.022 0.005 2.72E-06 

      MCV 0.014 0.006 2.14E-02 

      MCH 0.024 0.007 2.78E-04 

            MCHC 0.019 0.006 9.14E-04 
Abbreviations: Chr, chromosome; Pos, basepair position; Alt, effect allele; Ref, reference allele; EAF, effect allele frequency; EA, European ancestry, All, combined 
European, African, Hispanic American, East Asian and South Asian ancestries; BAS, basophil; HCT, hematocrit; HGB, hemoglobin; LYM, lymphocyte; MCH, mean 
corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; MON, monocytes; MPV, mean platelet volume; PLT, 
platelet; RBC, red blood cell; RDW, red cell distribution width; WBC, white blood cell. 

 

 



 

See Table S13 in the accompanying Excel file.  
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